Serveur d'exploration SilverBacteriV1

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Domination of volumetric toughening by silver nanoparticles over interfacial strengthening of carbon nanotubes in bactericidal hydroxyapatite biocomposite.

Identifieur interne : 000886 ( Main/Corpus ); précédent : 000885; suivant : 000887

Domination of volumetric toughening by silver nanoparticles over interfacial strengthening of carbon nanotubes in bactericidal hydroxyapatite biocomposite.

Auteurs : Katharina Herkendell ; Vishnu Raj Shukla ; Anup Kumar Patel ; Kantesh Balani

Source :

RBID : pubmed:24268282

English descriptors

Abstract

In order to address the problem of bacterial infections in bone-substitution surgery, it is essential that bone replacement biomaterials are equipped with bactericidal components. This research aims to optimize the content of silver (Ag), a well-known antibacterial metal, in a multiwalled carbon nanotube (CNT) reinforced hydroxyapatite (HA) composite, to yield a bioceramic which can be used as an antibacterial and tough surface of bone replacement prosthesis. The bactericidal properties evaluated using Escherichia coli and Staphylococcus epidermidis indicate that CNT reinforcement supports growth of Gram negative E. coli bacteria (~8.5% more adhesion than pure HA); but showed a strong decrease of Gram positive S. epidermidis bacteria (~diminished to 66%) compared to that of pure HA. Small amounts of silver (2-5wt.%) already show a severe bactericidal effect when compared to that of HA-CNT (by 30% and ~60% respectively). MTT assay confirmed enhanced biocompatibility of L929 cells on HA-4wt.% CNT (~121%), HA-4wt.% CNT-1wt.% Ag (~124%) sample and HA-4wt.% CNT-2wt.% Ag (~100%) when compared to that of pure HA. The samples with higher silver content showed decreased biocompatibility (77% for HA-4wt.% CNT-5wt.% Ag sample and 73% for HA-4wt.% CNT-10wt.% Ag). Though reinforcement of 4wt.% CNT has shown an increase of fracture toughness by ~62%, silver reinforcement has shown enhancement of up to 244% (i.e. 3.43 times). Accordingly, isolation of toughening contribution indicates that volumetric toughening by silver dominates over interfacial strengthening contributed by CNTs towards enhanced fracture toughness of potential HA-Ag-CNT biocomposites.

DOI: 10.1016/j.msec.2013.09.034
PubMed: 24268282

Links to Exploration step

pubmed:24268282

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Domination of volumetric toughening by silver nanoparticles over interfacial strengthening of carbon nanotubes in bactericidal hydroxyapatite biocomposite.</title>
<author>
<name sortKey="Herkendell, Katharina" sort="Herkendell, Katharina" uniqKey="Herkendell K" first="Katharina" last="Herkendell">Katharina Herkendell</name>
<affiliation>
<nlm:affiliation>MVM - Department for Mechanical Process Engineering & Mechanics, Karlsruhe Institute of Technology, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shukla, Vishnu Raj" sort="Shukla, Vishnu Raj" uniqKey="Shukla V" first="Vishnu Raj" last="Shukla">Vishnu Raj Shukla</name>
</author>
<author>
<name sortKey="Patel, Anup Kumar" sort="Patel, Anup Kumar" uniqKey="Patel A" first="Anup Kumar" last="Patel">Anup Kumar Patel</name>
</author>
<author>
<name sortKey="Balani, Kantesh" sort="Balani, Kantesh" uniqKey="Balani K" first="Kantesh" last="Balani">Kantesh Balani</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24268282</idno>
<idno type="pmid">24268282</idno>
<idno type="doi">10.1016/j.msec.2013.09.034</idno>
<idno type="wicri:Area/Main/Corpus">000886</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000886</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Domination of volumetric toughening by silver nanoparticles over interfacial strengthening of carbon nanotubes in bactericidal hydroxyapatite biocomposite.</title>
<author>
<name sortKey="Herkendell, Katharina" sort="Herkendell, Katharina" uniqKey="Herkendell K" first="Katharina" last="Herkendell">Katharina Herkendell</name>
<affiliation>
<nlm:affiliation>MVM - Department for Mechanical Process Engineering & Mechanics, Karlsruhe Institute of Technology, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shukla, Vishnu Raj" sort="Shukla, Vishnu Raj" uniqKey="Shukla V" first="Vishnu Raj" last="Shukla">Vishnu Raj Shukla</name>
</author>
<author>
<name sortKey="Patel, Anup Kumar" sort="Patel, Anup Kumar" uniqKey="Patel A" first="Anup Kumar" last="Patel">Anup Kumar Patel</name>
</author>
<author>
<name sortKey="Balani, Kantesh" sort="Balani, Kantesh" uniqKey="Balani K" first="Kantesh" last="Balani">Kantesh Balani</name>
</author>
</analytic>
<series>
<title level="j">Materials science & engineering. C, Materials for biological applications</title>
<idno type="eISSN">1873-0191</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Anti-Bacterial Agents (pharmacology)</term>
<term>Biocompatible Materials (pharmacology)</term>
<term>Cell Count (MeSH)</term>
<term>Colony Count, Microbial (MeSH)</term>
<term>Durapatite (pharmacology)</term>
<term>Elastic Modulus (drug effects)</term>
<term>Escherichia coli (drug effects)</term>
<term>Fibroblasts (cytology)</term>
<term>Fibroblasts (drug effects)</term>
<term>Hardness (MeSH)</term>
<term>Metal Nanoparticles (chemistry)</term>
<term>Metal Nanoparticles (ultrastructure)</term>
<term>Mice (MeSH)</term>
<term>Microbial Sensitivity Tests (MeSH)</term>
<term>Nanotubes, Carbon (chemistry)</term>
<term>Nanotubes, Carbon (ultrastructure)</term>
<term>Phase Transition (drug effects)</term>
<term>Silver (chemistry)</term>
<term>Spectrometry, X-Ray Emission (MeSH)</term>
<term>Spectrum Analysis, Raman (MeSH)</term>
<term>Staphylococcus epidermidis (drug effects)</term>
<term>Staphylococcus epidermidis (ultrastructure)</term>
<term>X-Ray Diffraction (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Nanotubes, Carbon</term>
<term>Silver</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Anti-Bacterial Agents</term>
<term>Biocompatible Materials</term>
<term>Durapatite</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Metal Nanoparticles</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Fibroblasts</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Elastic Modulus</term>
<term>Escherichia coli</term>
<term>Fibroblasts</term>
<term>Phase Transition</term>
<term>Staphylococcus epidermidis</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Metal Nanoparticles</term>
<term>Nanotubes, Carbon</term>
<term>Staphylococcus epidermidis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Count</term>
<term>Colony Count, Microbial</term>
<term>Hardness</term>
<term>Mice</term>
<term>Microbial Sensitivity Tests</term>
<term>Spectrometry, X-Ray Emission</term>
<term>Spectrum Analysis, Raman</term>
<term>X-Ray Diffraction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In order to address the problem of bacterial infections in bone-substitution surgery, it is essential that bone replacement biomaterials are equipped with bactericidal components. This research aims to optimize the content of silver (Ag), a well-known antibacterial metal, in a multiwalled carbon nanotube (CNT) reinforced hydroxyapatite (HA) composite, to yield a bioceramic which can be used as an antibacterial and tough surface of bone replacement prosthesis. The bactericidal properties evaluated using Escherichia coli and Staphylococcus epidermidis indicate that CNT reinforcement supports growth of Gram negative E. coli bacteria (~8.5% more adhesion than pure HA); but showed a strong decrease of Gram positive S. epidermidis bacteria (~diminished to 66%) compared to that of pure HA. Small amounts of silver (2-5wt.%) already show a severe bactericidal effect when compared to that of HA-CNT (by 30% and ~60% respectively). MTT assay confirmed enhanced biocompatibility of L929 cells on HA-4wt.% CNT (~121%), HA-4wt.% CNT-1wt.% Ag (~124%) sample and HA-4wt.% CNT-2wt.% Ag (~100%) when compared to that of pure HA. The samples with higher silver content showed decreased biocompatibility (77% for HA-4wt.% CNT-5wt.% Ag sample and 73% for HA-4wt.% CNT-10wt.% Ag). Though reinforcement of 4wt.% CNT has shown an increase of fracture toughness by ~62%, silver reinforcement has shown enhancement of up to 244% (i.e. 3.43 times). Accordingly, isolation of toughening contribution indicates that volumetric toughening by silver dominates over interfacial strengthening contributed by CNTs towards enhanced fracture toughness of potential HA-Ag-CNT biocomposites. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24268282</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>08</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-0191</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>34</Volume>
<PubDate>
<Year>2014</Year>
<Month>Jan</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Materials science & engineering. C, Materials for biological applications</Title>
<ISOAbbreviation>Mater Sci Eng C Mater Biol Appl</ISOAbbreviation>
</Journal>
<ArticleTitle>Domination of volumetric toughening by silver nanoparticles over interfacial strengthening of carbon nanotubes in bactericidal hydroxyapatite biocomposite.</ArticleTitle>
<Pagination>
<MedlinePgn>455-67</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.msec.2013.09.034</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0928-4931(13)00556-0</ELocationID>
<Abstract>
<AbstractText>In order to address the problem of bacterial infections in bone-substitution surgery, it is essential that bone replacement biomaterials are equipped with bactericidal components. This research aims to optimize the content of silver (Ag), a well-known antibacterial metal, in a multiwalled carbon nanotube (CNT) reinforced hydroxyapatite (HA) composite, to yield a bioceramic which can be used as an antibacterial and tough surface of bone replacement prosthesis. The bactericidal properties evaluated using Escherichia coli and Staphylococcus epidermidis indicate that CNT reinforcement supports growth of Gram negative E. coli bacteria (~8.5% more adhesion than pure HA); but showed a strong decrease of Gram positive S. epidermidis bacteria (~diminished to 66%) compared to that of pure HA. Small amounts of silver (2-5wt.%) already show a severe bactericidal effect when compared to that of HA-CNT (by 30% and ~60% respectively). MTT assay confirmed enhanced biocompatibility of L929 cells on HA-4wt.% CNT (~121%), HA-4wt.% CNT-1wt.% Ag (~124%) sample and HA-4wt.% CNT-2wt.% Ag (~100%) when compared to that of pure HA. The samples with higher silver content showed decreased biocompatibility (77% for HA-4wt.% CNT-5wt.% Ag sample and 73% for HA-4wt.% CNT-10wt.% Ag). Though reinforcement of 4wt.% CNT has shown an increase of fracture toughness by ~62%, silver reinforcement has shown enhancement of up to 244% (i.e. 3.43 times). Accordingly, isolation of toughening contribution indicates that volumetric toughening by silver dominates over interfacial strengthening contributed by CNTs towards enhanced fracture toughness of potential HA-Ag-CNT biocomposites. </AbstractText>
<CopyrightInformation>© 2013.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Herkendell</LastName>
<ForeName>Katharina</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>MVM - Department for Mechanical Process Engineering & Mechanics, Karlsruhe Institute of Technology, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shukla</LastName>
<ForeName>Vishnu Raj</ForeName>
<Initials>VR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Patel</LastName>
<ForeName>Anup Kumar</ForeName>
<Initials>AK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Balani</LastName>
<ForeName>Kantesh</ForeName>
<Initials>K</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>10</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Mater Sci Eng C Mater Biol Appl</MedlineTA>
<NlmUniqueID>101484109</NlmUniqueID>
<ISSNLinking>0928-4931</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000900">Anti-Bacterial Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001672">Biocompatible Materials</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D037742">Nanotubes, Carbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3M4G523W1G</RegistryNumber>
<NameOfSubstance UI="D012834">Silver</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>91D9GV0Z28</RegistryNumber>
<NameOfSubstance UI="D017886">Durapatite</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000900" MajorTopicYN="N">Anti-Bacterial Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001672" MajorTopicYN="N">Biocompatible Materials</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002452" MajorTopicYN="N">Cell Count</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015169" MajorTopicYN="N">Colony Count, Microbial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017886" MajorTopicYN="N">Durapatite</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055119" MajorTopicYN="N">Elastic Modulus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005347" MajorTopicYN="N">Fibroblasts</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006244" MajorTopicYN="N">Hardness</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053768" MajorTopicYN="N">Metal Nanoparticles</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008826" MajorTopicYN="N">Microbial Sensitivity Tests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D037742" MajorTopicYN="N">Nanotubes, Carbon</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044367" MajorTopicYN="N">Phase Transition</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012834" MajorTopicYN="N">Silver</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013052" MajorTopicYN="N">Spectrometry, X-Ray Emission</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013059" MajorTopicYN="N">Spectrum Analysis, Raman</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013212" MajorTopicYN="N">Staphylococcus epidermidis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014961" MajorTopicYN="N">X-Ray Diffraction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Antibacterial</Keyword>
<Keyword MajorTopicYN="N">Carbon nanotubes (CNTs)</Keyword>
<Keyword MajorTopicYN="N">Cytocompatibility</Keyword>
<Keyword MajorTopicYN="N">Fracture toughness</Keyword>
<Keyword MajorTopicYN="N">Hydroxyapatite (HA)</Keyword>
<Keyword MajorTopicYN="N">Silver (Ag)</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>07</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2013</Year>
<Month>09</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>09</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>11</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>11</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>8</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24268282</ArticleId>
<ArticleId IdType="pii">S0928-4931(13)00556-0</ArticleId>
<ArticleId IdType="doi">10.1016/j.msec.2013.09.034</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Terre/explor/SilverBacteriV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000886 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000886 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Terre
   |area=    SilverBacteriV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24268282
   |texte=   Domination of volumetric toughening by silver nanoparticles over interfacial strengthening of carbon nanotubes in bactericidal hydroxyapatite biocomposite.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:24268282" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SilverBacteriV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Feb 1 22:59:42 2021. Site generation: Mon Feb 1 23:01:29 2021