Serveur d'exploration SilverBacteriV1

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Coexistence of silver and titanium dioxide nanoparticles: enhancing or reducing environmental risks?

Identifieur interne : 000836 ( Main/Corpus ); précédent : 000835; suivant : 000837

Coexistence of silver and titanium dioxide nanoparticles: enhancing or reducing environmental risks?

Auteurs : Xiaoyan Zou ; Junpeng Shi ; Hongwu Zhang

Source :

RBID : pubmed:24907921

English descriptors

Abstract

Due to their bactericidal and photocatalytic characteristics, silver nanoparticles (Ag NPs) and titanium dioxide nanoparticles (TiO2 NPs) are widely used in the fields of environment and physiology. Once these untreated nanoparticles are released into an aquatic environment and encounter one another, there is more uncertainty about their fate and ecotoxicological risks compared with the single nanoparticles. To expand our knowledge of the health and environmental impacts of nanoparticles, we investigated the possible risk of the co-existence of TiO2 NPs and Ag NPs in an aquatic environment using ciliated protozoa (Tetrahymena pyriformis) as an aquatic animal model. In this study, silver ion (Ag(+)) release and physicochemical properties, as well as their effect on oxidative stress biomarkers, were monitored. Continuous illumination (12,000 lx) led to the 20.0% decrease in Ag(+) release in comparison with dark conditions, while TiO2 NPs and continuous illumination resulted in decreasing the Ag(+) concentration to 64.3% in contrast with Ag NPs-only suspensions. Toxicity tests indicated that different illumination modes exerted distinct effects of TiO2 NPs on the toxicity of Ag NPs: no effects, antagonism and synergism in dark, natural light and continuous light, respectively. In the presence of 1.5mg/L (18.8 μM) TiO2 NPs, the toxicity of 1.5 mg/L (13.9 μM) Ag NPs was reduced by 28.7% and increased by 6.93% in natural light and 12,000 lx of continuous light, respectively. After culturing in 12,000 lx continuous light for 24h, SOD activity of the light control surged to 1.96 times compared to the dark control (P<0.001). TiO2 NPs induced a reduction of CAT activity by an average of (36.1±1.7) % in the light. In the natural light reductions in the toxicity of Ag, NPs decrease Ag(+) concentrations via adsorption of Ag(+) onto TiO2 NPs surfaces. The enhancement of Ag NPs toxicity can contribute to the formation of activated TiO2-Ag NPs complexes in continuous light. The existence of TiO2 NPs in various illumination modes changed the surface chemistry of Ag NPs and then led to different toxicity effects. TiO2 NPs reduce the environmental risks of Ag NPs in natural light, but in continuous light, TiO2 NPs enhance the environmental risks of Ag NPs.

DOI: 10.1016/j.aquatox.2014.05.020
PubMed: 24907921

Links to Exploration step

pubmed:24907921

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Coexistence of silver and titanium dioxide nanoparticles: enhancing or reducing environmental risks?</title>
<author>
<name sortKey="Zou, Xiaoyan" sort="Zou, Xiaoyan" uniqKey="Zou X" first="Xiaoyan" last="Zou">Xiaoyan Zou</name>
<affiliation>
<nlm:affiliation>Institute of Urban Environment, Chinese Academy of Sciences, Jimei Road 1799, Xiamen 361021, China. Electronic address: xyzou@iue.ac.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shi, Junpeng" sort="Shi, Junpeng" uniqKey="Shi J" first="Junpeng" last="Shi">Junpeng Shi</name>
<affiliation>
<nlm:affiliation>Institute of Urban Environment, Chinese Academy of Sciences, Jimei Road 1799, Xiamen 361021, China. Electronic address: jpshi@iue.ac.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Hongwu" sort="Zhang, Hongwu" uniqKey="Zhang H" first="Hongwu" last="Zhang">Hongwu Zhang</name>
<affiliation>
<nlm:affiliation>Institute of Urban Environment, Chinese Academy of Sciences, Jimei Road 1799, Xiamen 361021, China. Electronic address: hwzhang@iue.ac.cn.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24907921</idno>
<idno type="pmid">24907921</idno>
<idno type="doi">10.1016/j.aquatox.2014.05.020</idno>
<idno type="wicri:Area/Main/Corpus">000836</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000836</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Coexistence of silver and titanium dioxide nanoparticles: enhancing or reducing environmental risks?</title>
<author>
<name sortKey="Zou, Xiaoyan" sort="Zou, Xiaoyan" uniqKey="Zou X" first="Xiaoyan" last="Zou">Xiaoyan Zou</name>
<affiliation>
<nlm:affiliation>Institute of Urban Environment, Chinese Academy of Sciences, Jimei Road 1799, Xiamen 361021, China. Electronic address: xyzou@iue.ac.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shi, Junpeng" sort="Shi, Junpeng" uniqKey="Shi J" first="Junpeng" last="Shi">Junpeng Shi</name>
<affiliation>
<nlm:affiliation>Institute of Urban Environment, Chinese Academy of Sciences, Jimei Road 1799, Xiamen 361021, China. Electronic address: jpshi@iue.ac.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Hongwu" sort="Zhang, Hongwu" uniqKey="Zhang H" first="Hongwu" last="Zhang">Hongwu Zhang</name>
<affiliation>
<nlm:affiliation>Institute of Urban Environment, Chinese Academy of Sciences, Jimei Road 1799, Xiamen 361021, China. Electronic address: hwzhang@iue.ac.cn.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Aquatic toxicology (Amsterdam, Netherlands)</title>
<idno type="eISSN">1879-1514</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Drug Interactions (MeSH)</term>
<term>Environment (MeSH)</term>
<term>Light (MeSH)</term>
<term>Nanoparticles (chemistry)</term>
<term>Nanoparticles (toxicity)</term>
<term>Oxidative Stress (drug effects)</term>
<term>Silver (chemistry)</term>
<term>Silver (toxicity)</term>
<term>Tetrahymena pyriformis (drug effects)</term>
<term>Titanium (chemistry)</term>
<term>Titanium (toxicity)</term>
<term>Toxicity Tests (MeSH)</term>
<term>Water Pollutants, Chemical (chemistry)</term>
<term>Water Pollutants, Chemical (toxicity)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Silver</term>
<term>Titanium</term>
<term>Water Pollutants, Chemical</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Nanoparticles</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Oxidative Stress</term>
<term>Tetrahymena pyriformis</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicity" xml:lang="en">
<term>Nanoparticles</term>
<term>Silver</term>
<term>Titanium</term>
<term>Water Pollutants, Chemical</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Drug Interactions</term>
<term>Environment</term>
<term>Light</term>
<term>Toxicity Tests</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Due to their bactericidal and photocatalytic characteristics, silver nanoparticles (Ag NPs) and titanium dioxide nanoparticles (TiO2 NPs) are widely used in the fields of environment and physiology. Once these untreated nanoparticles are released into an aquatic environment and encounter one another, there is more uncertainty about their fate and ecotoxicological risks compared with the single nanoparticles. To expand our knowledge of the health and environmental impacts of nanoparticles, we investigated the possible risk of the co-existence of TiO2 NPs and Ag NPs in an aquatic environment using ciliated protozoa (Tetrahymena pyriformis) as an aquatic animal model. In this study, silver ion (Ag(+)) release and physicochemical properties, as well as their effect on oxidative stress biomarkers, were monitored. Continuous illumination (12,000 lx) led to the 20.0% decrease in Ag(+) release in comparison with dark conditions, while TiO2 NPs and continuous illumination resulted in decreasing the Ag(+) concentration to 64.3% in contrast with Ag NPs-only suspensions. Toxicity tests indicated that different illumination modes exerted distinct effects of TiO2 NPs on the toxicity of Ag NPs: no effects, antagonism and synergism in dark, natural light and continuous light, respectively. In the presence of 1.5mg/L (18.8 μM) TiO2 NPs, the toxicity of 1.5 mg/L (13.9 μM) Ag NPs was reduced by 28.7% and increased by 6.93% in natural light and 12,000 lx of continuous light, respectively. After culturing in 12,000 lx continuous light for 24h, SOD activity of the light control surged to 1.96 times compared to the dark control (P<0.001). TiO2 NPs induced a reduction of CAT activity by an average of (36.1±1.7) % in the light. In the natural light reductions in the toxicity of Ag, NPs decrease Ag(+) concentrations via adsorption of Ag(+) onto TiO2 NPs surfaces. The enhancement of Ag NPs toxicity can contribute to the formation of activated TiO2-Ag NPs complexes in continuous light. The existence of TiO2 NPs in various illumination modes changed the surface chemistry of Ag NPs and then led to different toxicity effects. TiO2 NPs reduce the environmental risks of Ag NPs in natural light, but in continuous light, TiO2 NPs enhance the environmental risks of Ag NPs.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">24907921</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>09</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1879-1514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>154</Volume>
<PubDate>
<Year>2014</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Aquatic toxicology (Amsterdam, Netherlands)</Title>
<ISOAbbreviation>Aquat Toxicol</ISOAbbreviation>
</Journal>
<ArticleTitle>Coexistence of silver and titanium dioxide nanoparticles: enhancing or reducing environmental risks?</ArticleTitle>
<Pagination>
<MedlinePgn>168-75</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.aquatox.2014.05.020</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0166-445X(14)00179-9</ELocationID>
<Abstract>
<AbstractText>Due to their bactericidal and photocatalytic characteristics, silver nanoparticles (Ag NPs) and titanium dioxide nanoparticles (TiO2 NPs) are widely used in the fields of environment and physiology. Once these untreated nanoparticles are released into an aquatic environment and encounter one another, there is more uncertainty about their fate and ecotoxicological risks compared with the single nanoparticles. To expand our knowledge of the health and environmental impacts of nanoparticles, we investigated the possible risk of the co-existence of TiO2 NPs and Ag NPs in an aquatic environment using ciliated protozoa (Tetrahymena pyriformis) as an aquatic animal model. In this study, silver ion (Ag(+)) release and physicochemical properties, as well as their effect on oxidative stress biomarkers, were monitored. Continuous illumination (12,000 lx) led to the 20.0% decrease in Ag(+) release in comparison with dark conditions, while TiO2 NPs and continuous illumination resulted in decreasing the Ag(+) concentration to 64.3% in contrast with Ag NPs-only suspensions. Toxicity tests indicated that different illumination modes exerted distinct effects of TiO2 NPs on the toxicity of Ag NPs: no effects, antagonism and synergism in dark, natural light and continuous light, respectively. In the presence of 1.5mg/L (18.8 μM) TiO2 NPs, the toxicity of 1.5 mg/L (13.9 μM) Ag NPs was reduced by 28.7% and increased by 6.93% in natural light and 12,000 lx of continuous light, respectively. After culturing in 12,000 lx continuous light for 24h, SOD activity of the light control surged to 1.96 times compared to the dark control (P<0.001). TiO2 NPs induced a reduction of CAT activity by an average of (36.1±1.7) % in the light. In the natural light reductions in the toxicity of Ag, NPs decrease Ag(+) concentrations via adsorption of Ag(+) onto TiO2 NPs surfaces. The enhancement of Ag NPs toxicity can contribute to the formation of activated TiO2-Ag NPs complexes in continuous light. The existence of TiO2 NPs in various illumination modes changed the surface chemistry of Ag NPs and then led to different toxicity effects. TiO2 NPs reduce the environmental risks of Ag NPs in natural light, but in continuous light, TiO2 NPs enhance the environmental risks of Ag NPs.</AbstractText>
<CopyrightInformation>Copyright © 2014 Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zou</LastName>
<ForeName>Xiaoyan</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Institute of Urban Environment, Chinese Academy of Sciences, Jimei Road 1799, Xiamen 361021, China. Electronic address: xyzou@iue.ac.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shi</LastName>
<ForeName>Junpeng</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Institute of Urban Environment, Chinese Academy of Sciences, Jimei Road 1799, Xiamen 361021, China. Electronic address: jpshi@iue.ac.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Hongwu</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Institute of Urban Environment, Chinese Academy of Sciences, Jimei Road 1799, Xiamen 361021, China. Electronic address: hwzhang@iue.ac.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>05</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Aquat Toxicol</MedlineTA>
<NlmUniqueID>8500246</NlmUniqueID>
<ISSNLinking>0166-445X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014874">Water Pollutants, Chemical</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>15FIX9V2JP</RegistryNumber>
<NameOfSubstance UI="C009495">titanium dioxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3M4G523W1G</RegistryNumber>
<NameOfSubstance UI="D012834">Silver</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>D1JT611TNE</RegistryNumber>
<NameOfSubstance UI="D014025">Titanium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004347" MajorTopicYN="N">Drug Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004777" MajorTopicYN="N">Environment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008027" MajorTopicYN="N">Light</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053758" MajorTopicYN="N">Nanoparticles</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="Y">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012834" MajorTopicYN="N">Silver</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="Y">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013769" MajorTopicYN="N">Tetrahymena pyriformis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014025" MajorTopicYN="N">Titanium</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="Y">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018675" MajorTopicYN="N">Toxicity Tests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014874" MajorTopicYN="N">Water Pollutants, Chemical</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Combined toxicity</Keyword>
<Keyword MajorTopicYN="N">Silver ions</Keyword>
<Keyword MajorTopicYN="N">Silver nanoparticles</Keyword>
<Keyword MajorTopicYN="N">Titanium dioxide nanoparticles</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>02</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2014</Year>
<Month>05</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>05</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>6</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>6</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>9</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24907921</ArticleId>
<ArticleId IdType="pii">S0166-445X(14)00179-9</ArticleId>
<ArticleId IdType="doi">10.1016/j.aquatox.2014.05.020</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Terre/explor/SilverBacteriV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000836 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000836 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Terre
   |area=    SilverBacteriV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24907921
   |texte=   Coexistence of silver and titanium dioxide nanoparticles: enhancing or reducing environmental risks?
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:24907921" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SilverBacteriV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Feb 1 22:59:42 2021. Site generation: Mon Feb 1 23:01:29 2021