Serveur d'exploration SilverBacteriV1

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Bioinspired and biocompatible carbon nanotube-Ag nanohybrid coatings for robust antibacterial applications.

Identifieur interne : 000588 ( Main/Corpus ); précédent : 000587; suivant : 000589

Bioinspired and biocompatible carbon nanotube-Ag nanohybrid coatings for robust antibacterial applications.

Auteurs : Chuanxiong Nie ; Ye Yang ; Chong Cheng ; Lang Ma ; Jie Deng ; Lingren Wang ; Changsheng Zhao

Source :

RBID : pubmed:28082114

English descriptors

Abstract

The design of self-sterilizing surfaces with favorable biocompatibility is acknowledged as an effective approach to deal with the bacterial infections of biomedical devices. In this study, we report an intriguing protocol for the large-scale fabrication of self-sterilizing and biocompatible surface film coatings by using polymer shielded silver nanoparticle loaded oxidized carbon nanotube (AgNPs@oCNT) nano-dispersions. To achieve the antibacterial coatings, the bioinspired positively charged and negatively charged AgNPs@oCNTs were alternately deposited onto substrates by spray-coating assisted layer-by-layer assembly. Then the bacterial inhibitory zones, optical density value monitoring, bacterial killing efficiency and adhesion were investigated; and all the results revealed that the AgNPs@oCNTs thin film coatings exhibited robust and long-term antibacterial activity against both Gram negative and Gram positive bacteria. Moreover, due to the shielding effects of polymer layers, the coatings showed extraordinary blood compatibility and limited toxicity against human umbilical vein endothelial cells. It is believed that the proposed large-scale fabrication of bactericidal, blood and cell compatible AgNPs@oCNT based thin film coatings will have great potential to forward novel operational pathogenic inhibition strategies to avoid undesired bacterial contaminations of biomedical implants or biological devices.

STATEMENT OF SIGNIFICANCE

Bacterial infection of medical devices has been considered to be a world-wide clinical threat towards patients' health. In this study, a bioinspired and biocompatible antibacterial coating was prepared via the spray-assisted layer-by-layer (LbL) assembly. The silver nanopartilces loaded oxidized carbon nanotube (AgNPs@oCNT), which were coated by functional polymers (chitosan and synthetic heparin mimicking polymers), were prepared via mussel inspired chemistry; and the spray-assisted assembly process allowed the fast construction on devices. Owing to the antibacterial efficiency of the loaded AgNPs, the coating showed robust bacterial killing activity and resistance towards bacterial adhesion. Moreover, since that the AgNPs were shielded by the polymers, the coating exhibited no clear toxicity at blood or cellular level. Benefiting from the universal and large-scale fabrication advancements of the spray assisted LbL coating; it is believed that the proposed strategy can be applied in designing many other kinds of self-sterilizing biomedical implants and devices.


DOI: 10.1016/j.actbio.2017.01.027
PubMed: 28082114

Links to Exploration step

pubmed:28082114

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Bioinspired and biocompatible carbon nanotube-Ag nanohybrid coatings for robust antibacterial applications.</title>
<author>
<name sortKey="Nie, Chuanxiong" sort="Nie, Chuanxiong" uniqKey="Nie C" first="Chuanxiong" last="Nie">Chuanxiong Nie</name>
<affiliation>
<nlm:affiliation>College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Ye" sort="Yang, Ye" uniqKey="Yang Y" first="Ye" last="Yang">Ye Yang</name>
<affiliation>
<nlm:affiliation>College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cheng, Chong" sort="Cheng, Chong" uniqKey="Cheng C" first="Chong" last="Cheng">Chong Cheng</name>
<affiliation>
<nlm:affiliation>College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; Department of Chemistry and Biochemistry, Freie Universitat Berlin, Takustr. 3, 14195 Berlin, Germany. Electronic address: sagecheng@163.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ma, Lang" sort="Ma, Lang" uniqKey="Ma L" first="Lang" last="Ma">Lang Ma</name>
<affiliation>
<nlm:affiliation>College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Deng, Jie" sort="Deng, Jie" uniqKey="Deng J" first="Jie" last="Deng">Jie Deng</name>
<affiliation>
<nlm:affiliation>College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Lingren" sort="Wang, Lingren" uniqKey="Wang L" first="Lingren" last="Wang">Lingren Wang</name>
<affiliation>
<nlm:affiliation>Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian 223003, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Changsheng" sort="Zhao, Changsheng" uniqKey="Zhao C" first="Changsheng" last="Zhao">Changsheng Zhao</name>
<affiliation>
<nlm:affiliation>College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China. Electronic address: zhaochsh70@163.com.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28082114</idno>
<idno type="pmid">28082114</idno>
<idno type="doi">10.1016/j.actbio.2017.01.027</idno>
<idno type="wicri:Area/Main/Corpus">000588</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000588</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Bioinspired and biocompatible carbon nanotube-Ag nanohybrid coatings for robust antibacterial applications.</title>
<author>
<name sortKey="Nie, Chuanxiong" sort="Nie, Chuanxiong" uniqKey="Nie C" first="Chuanxiong" last="Nie">Chuanxiong Nie</name>
<affiliation>
<nlm:affiliation>College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Ye" sort="Yang, Ye" uniqKey="Yang Y" first="Ye" last="Yang">Ye Yang</name>
<affiliation>
<nlm:affiliation>College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cheng, Chong" sort="Cheng, Chong" uniqKey="Cheng C" first="Chong" last="Cheng">Chong Cheng</name>
<affiliation>
<nlm:affiliation>College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; Department of Chemistry and Biochemistry, Freie Universitat Berlin, Takustr. 3, 14195 Berlin, Germany. Electronic address: sagecheng@163.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ma, Lang" sort="Ma, Lang" uniqKey="Ma L" first="Lang" last="Ma">Lang Ma</name>
<affiliation>
<nlm:affiliation>College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Deng, Jie" sort="Deng, Jie" uniqKey="Deng J" first="Jie" last="Deng">Jie Deng</name>
<affiliation>
<nlm:affiliation>College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Lingren" sort="Wang, Lingren" uniqKey="Wang L" first="Lingren" last="Wang">Lingren Wang</name>
<affiliation>
<nlm:affiliation>Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian 223003, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Changsheng" sort="Zhao, Changsheng" uniqKey="Zhao C" first="Changsheng" last="Zhao">Changsheng Zhao</name>
<affiliation>
<nlm:affiliation>College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China. Electronic address: zhaochsh70@163.com.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Acta biomaterialia</title>
<idno type="eISSN">1878-7568</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult (MeSH)</term>
<term>Anti-Bacterial Agents (pharmacology)</term>
<term>Biomimetic Materials (chemistry)</term>
<term>Cell Adhesion (drug effects)</term>
<term>Cell Death (drug effects)</term>
<term>Cell Shape (drug effects)</term>
<term>Coated Materials, Biocompatible (chemistry)</term>
<term>Escherichia coli (drug effects)</term>
<term>Human Umbilical Vein Endothelial Cells (drug effects)</term>
<term>Humans (MeSH)</term>
<term>Male (MeSH)</term>
<term>Materials Testing (MeSH)</term>
<term>Microbial Sensitivity Tests (MeSH)</term>
<term>Nanotubes, Carbon (chemistry)</term>
<term>Nanotubes, Carbon (ultrastructure)</term>
<term>Photoelectron Spectroscopy (MeSH)</term>
<term>Platelet Adhesiveness (drug effects)</term>
<term>Silver (pharmacology)</term>
<term>Staphylococcus aureus (drug effects)</term>
<term>Surface Properties (MeSH)</term>
<term>Water (chemistry)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Coated Materials, Biocompatible</term>
<term>Nanotubes, Carbon</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Anti-Bacterial Agents</term>
<term>Silver</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Biomimetic Materials</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Cell Adhesion</term>
<term>Cell Death</term>
<term>Cell Shape</term>
<term>Escherichia coli</term>
<term>Human Umbilical Vein Endothelial Cells</term>
<term>Platelet Adhesiveness</term>
<term>Staphylococcus aureus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="ultrastructure" xml:lang="en">
<term>Nanotubes, Carbon</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Humans</term>
<term>Male</term>
<term>Materials Testing</term>
<term>Microbial Sensitivity Tests</term>
<term>Photoelectron Spectroscopy</term>
<term>Surface Properties</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The design of self-sterilizing surfaces with favorable biocompatibility is acknowledged as an effective approach to deal with the bacterial infections of biomedical devices. In this study, we report an intriguing protocol for the large-scale fabrication of self-sterilizing and biocompatible surface film coatings by using polymer shielded silver nanoparticle loaded oxidized carbon nanotube (AgNPs@oCNT) nano-dispersions. To achieve the antibacterial coatings, the bioinspired positively charged and negatively charged AgNPs@oCNTs were alternately deposited onto substrates by spray-coating assisted layer-by-layer assembly. Then the bacterial inhibitory zones, optical density value monitoring, bacterial killing efficiency and adhesion were investigated; and all the results revealed that the AgNPs@oCNTs thin film coatings exhibited robust and long-term antibacterial activity against both Gram negative and Gram positive bacteria. Moreover, due to the shielding effects of polymer layers, the coatings showed extraordinary blood compatibility and limited toxicity against human umbilical vein endothelial cells. It is believed that the proposed large-scale fabrication of bactericidal, blood and cell compatible AgNPs@oCNT based thin film coatings will have great potential to forward novel operational pathogenic inhibition strategies to avoid undesired bacterial contaminations of biomedical implants or biological devices.</div>
<div type="abstract" xml:lang="en">
<p>
<b>STATEMENT OF SIGNIFICANCE</b>
</p>
<p>Bacterial infection of medical devices has been considered to be a world-wide clinical threat towards patients' health. In this study, a bioinspired and biocompatible antibacterial coating was prepared via the spray-assisted layer-by-layer (LbL) assembly. The silver nanopartilces loaded oxidized carbon nanotube (AgNPs@oCNT), which were coated by functional polymers (chitosan and synthetic heparin mimicking polymers), were prepared via mussel inspired chemistry; and the spray-assisted assembly process allowed the fast construction on devices. Owing to the antibacterial efficiency of the loaded AgNPs, the coating showed robust bacterial killing activity and resistance towards bacterial adhesion. Moreover, since that the AgNPs were shielded by the polymers, the coating exhibited no clear toxicity at blood or cellular level. Benefiting from the universal and large-scale fabrication advancements of the spray assisted LbL coating; it is believed that the proposed strategy can be applied in designing many other kinds of self-sterilizing biomedical implants and devices.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28082114</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>11</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>12</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1878-7568</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>51</Volume>
<PubDate>
<Year>2017</Year>
<Month>03</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Acta biomaterialia</Title>
<ISOAbbreviation>Acta Biomater</ISOAbbreviation>
</Journal>
<ArticleTitle>Bioinspired and biocompatible carbon nanotube-Ag nanohybrid coatings for robust antibacterial applications.</ArticleTitle>
<Pagination>
<MedlinePgn>479-494</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S1742-7061(17)30027-2</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.actbio.2017.01.027</ELocationID>
<Abstract>
<AbstractText>The design of self-sterilizing surfaces with favorable biocompatibility is acknowledged as an effective approach to deal with the bacterial infections of biomedical devices. In this study, we report an intriguing protocol for the large-scale fabrication of self-sterilizing and biocompatible surface film coatings by using polymer shielded silver nanoparticle loaded oxidized carbon nanotube (AgNPs@oCNT) nano-dispersions. To achieve the antibacterial coatings, the bioinspired positively charged and negatively charged AgNPs@oCNTs were alternately deposited onto substrates by spray-coating assisted layer-by-layer assembly. Then the bacterial inhibitory zones, optical density value monitoring, bacterial killing efficiency and adhesion were investigated; and all the results revealed that the AgNPs@oCNTs thin film coatings exhibited robust and long-term antibacterial activity against both Gram negative and Gram positive bacteria. Moreover, due to the shielding effects of polymer layers, the coatings showed extraordinary blood compatibility and limited toxicity against human umbilical vein endothelial cells. It is believed that the proposed large-scale fabrication of bactericidal, blood and cell compatible AgNPs@oCNT based thin film coatings will have great potential to forward novel operational pathogenic inhibition strategies to avoid undesired bacterial contaminations of biomedical implants or biological devices.</AbstractText>
<AbstractText Label="STATEMENT OF SIGNIFICANCE">Bacterial infection of medical devices has been considered to be a world-wide clinical threat towards patients' health. In this study, a bioinspired and biocompatible antibacterial coating was prepared via the spray-assisted layer-by-layer (LbL) assembly. The silver nanopartilces loaded oxidized carbon nanotube (AgNPs@oCNT), which were coated by functional polymers (chitosan and synthetic heparin mimicking polymers), were prepared via mussel inspired chemistry; and the spray-assisted assembly process allowed the fast construction on devices. Owing to the antibacterial efficiency of the loaded AgNPs, the coating showed robust bacterial killing activity and resistance towards bacterial adhesion. Moreover, since that the AgNPs were shielded by the polymers, the coating exhibited no clear toxicity at blood or cellular level. Benefiting from the universal and large-scale fabrication advancements of the spray assisted LbL coating; it is believed that the proposed strategy can be applied in designing many other kinds of self-sterilizing biomedical implants and devices.</AbstractText>
<CopyrightInformation>Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Nie</LastName>
<ForeName>Chuanxiong</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Ye</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cheng</LastName>
<ForeName>Chong</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; Department of Chemistry and Biochemistry, Freie Universitat Berlin, Takustr. 3, 14195 Berlin, Germany. Electronic address: sagecheng@163.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Lang</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Deng</LastName>
<ForeName>Jie</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Lingren</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian 223003, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Changsheng</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China. Electronic address: zhaochsh70@163.com.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>01</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Acta Biomater</MedlineTA>
<NlmUniqueID>101233144</NlmUniqueID>
<ISSNLinking>1742-7061</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000900">Anti-Bacterial Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020099">Coated Materials, Biocompatible</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D037742">Nanotubes, Carbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3M4G523W1G</RegistryNumber>
<NameOfSubstance UI="D012834">Silver</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000900" MajorTopicYN="N">Anti-Bacterial Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040761" MajorTopicYN="N">Biomimetic Materials</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002448" MajorTopicYN="N">Cell Adhesion</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016923" MajorTopicYN="N">Cell Death</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048430" MajorTopicYN="N">Cell Shape</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020099" MajorTopicYN="N">Coated Materials, Biocompatible</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D061307" MajorTopicYN="N">Human Umbilical Vein Endothelial Cells</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008422" MajorTopicYN="N">Materials Testing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008826" MajorTopicYN="N">Microbial Sensitivity Tests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D037742" MajorTopicYN="N">Nanotubes, Carbon</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056951" MajorTopicYN="N">Photoelectron Spectroscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010973" MajorTopicYN="N">Platelet Adhesiveness</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012834" MajorTopicYN="N">Silver</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013211" MajorTopicYN="N">Staphylococcus aureus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013499" MajorTopicYN="N">Surface Properties</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Ag-carbon nanotube composites</Keyword>
<Keyword MajorTopicYN="Y">Antibacterial biomaterials</Keyword>
<Keyword MajorTopicYN="Y">Bactericidal activity</Keyword>
<Keyword MajorTopicYN="Y">Blood and cell compatibility</Keyword>
<Keyword MajorTopicYN="Y">Layer-by-layer spray-coating</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>09</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>12</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>01</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>1</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>11</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>1</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28082114</ArticleId>
<ArticleId IdType="pii">S1742-7061(17)30027-2</ArticleId>
<ArticleId IdType="doi">10.1016/j.actbio.2017.01.027</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Terre/explor/SilverBacteriV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000588 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000588 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Terre
   |area=    SilverBacteriV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28082114
   |texte=   Bioinspired and biocompatible carbon nanotube-Ag nanohybrid coatings for robust antibacterial applications.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:28082114" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SilverBacteriV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Feb 1 22:59:42 2021. Site generation: Mon Feb 1 23:01:29 2021