Serveur d'exploration SilverBacteriV1

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Stable Nanocomposite Based on PEGylated and Silver Nanoparticles Loaded Graphene Oxide for Long-Term Antibacterial Activity.

Identifieur interne : 000561 ( Main/Corpus ); précédent : 000560; suivant : 000562

Stable Nanocomposite Based on PEGylated and Silver Nanoparticles Loaded Graphene Oxide for Long-Term Antibacterial Activity.

Auteurs : Rongtao Zhao ; Min Lv ; Yang Li ; Mingxuan Sun ; Wen Kong ; Lihua Wang ; Shiping Song ; Chunhai Fan ; Leili Jia ; Shaofu Qiu ; Yansong Sun ; Hongbin Song ; Rongzhang Hao

Source :

RBID : pubmed:28422486

English descriptors

Abstract

The increasing occurrence of antibiotic-resistant pathogens, especially superbugs, is compromising the efficacy of traditional antibiotics. Silver nanoparticles (AgNPs) loaded graphene oxide (GO) nanocomposite (GO-Ag) has drawn great interest as a promising alternative antibacterial material. However, GO-Ag nanocomposite often irreversibly aggregates in physiological solutions, severely influencing its antibacterial capacity and practical application. Herein, a PEGylated and AgNPs loaded GO nanocomposite (GO-PEG-Ag) is synthesized through a facile approach utilizing microwave irradiation, while avoiding extra reducing agents. Through PEGylation, the synthesized GO-PEG-Ag nanocomposite dispersed stably over one month in a series of media and resisted centrifugation at 10 000×g for 5 min, which would benefit effective contact between the nanocomposite and the bacteria. In contrast, GO-Ag aggregated within 1 h of dispersion in physiological solutions. In comparison with GO-Ag, GO-PEG-Ag showed stronger bactericidal capability toward not only normal Gram-negative/positive bacteria such as E. coli and S. aureus (∼100% of E. coli and ∼95.3% of S. aureus reduction by 10 μg/mL nanocomposite for 2.5 h), but also superbugs. Moreover, GO-PEG-Ag showed lower cytotoxicity toward HeLa cells. Importantly, GO-PEG-Ag presented long-term antibacterial effectiveness, remaining ∼95% antibacterial activity after one-week storage in saline solution versus <35% for GO-Ag. The antibacterial mechanisms of GO-PEG-Ag were evidenced as damage to the bacterial structure and production of reactive oxygen species, causing cytoplasm leakage and metabolism decrease. The stable GO-PEG-Ag nanocomposite with powerful and long-term antibacterial capability provides a more practical and effective strategy for fighting superbugs-including pathogen threats in biomedicine and public health.

DOI: 10.1021/acsami.7b03987
PubMed: 28422486

Links to Exploration step

pubmed:28422486

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Stable Nanocomposite Based on PEGylated and Silver Nanoparticles Loaded Graphene Oxide for Long-Term Antibacterial Activity.</title>
<author>
<name sortKey="Zhao, Rongtao" sort="Zhao, Rongtao" uniqKey="Zhao R" first="Rongtao" last="Zhao">Rongtao Zhao</name>
<affiliation>
<nlm:affiliation>Institute of Disease Control and Prevention, AMMS , Beijing 100071, P. R. China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lv, Min" sort="Lv, Min" uniqKey="Lv M" first="Min" last="Lv">Min Lv</name>
<affiliation>
<nlm:affiliation>Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, P. R. China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Yang" sort="Li, Yang" uniqKey="Li Y" first="Yang" last="Li">Yang Li</name>
<affiliation>
<nlm:affiliation>Institute of Disease Control and Prevention, AMMS , Beijing 100071, P. R. China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sun, Mingxuan" sort="Sun, Mingxuan" uniqKey="Sun M" first="Mingxuan" last="Sun">Mingxuan Sun</name>
<affiliation>
<nlm:affiliation>Institute of Disease Control and Prevention, AMMS , Beijing 100071, P. R. China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kong, Wen" sort="Kong, Wen" uniqKey="Kong W" first="Wen" last="Kong">Wen Kong</name>
<affiliation>
<nlm:affiliation>Institute of Disease Control and Prevention, AMMS , Beijing 100071, P. R. China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Lihua" sort="Wang, Lihua" uniqKey="Wang L" first="Lihua" last="Wang">Lihua Wang</name>
<affiliation>
<nlm:affiliation>Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, P. R. China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Song, Shiping" sort="Song, Shiping" uniqKey="Song S" first="Shiping" last="Song">Shiping Song</name>
<affiliation>
<nlm:affiliation>Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, P. R. China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fan, Chunhai" sort="Fan, Chunhai" uniqKey="Fan C" first="Chunhai" last="Fan">Chunhai Fan</name>
<affiliation>
<nlm:affiliation>Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, P. R. China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jia, Leili" sort="Jia, Leili" uniqKey="Jia L" first="Leili" last="Jia">Leili Jia</name>
<affiliation>
<nlm:affiliation>Institute of Disease Control and Prevention, AMMS , Beijing 100071, P. R. China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Qiu, Shaofu" sort="Qiu, Shaofu" uniqKey="Qiu S" first="Shaofu" last="Qiu">Shaofu Qiu</name>
<affiliation>
<nlm:affiliation>Institute of Disease Control and Prevention, AMMS , Beijing 100071, P. R. China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sun, Yansong" sort="Sun, Yansong" uniqKey="Sun Y" first="Yansong" last="Sun">Yansong Sun</name>
<affiliation>
<nlm:affiliation>Department of Science and Technology, AMMS , Beijing 100850, P. R. China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Song, Hongbin" sort="Song, Hongbin" uniqKey="Song H" first="Hongbin" last="Song">Hongbin Song</name>
<affiliation>
<nlm:affiliation>Institute of Disease Control and Prevention, AMMS , Beijing 100071, P. R. China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hao, Rongzhang" sort="Hao, Rongzhang" uniqKey="Hao R" first="Rongzhang" last="Hao">Rongzhang Hao</name>
<affiliation>
<nlm:affiliation>Institute of Disease Control and Prevention, AMMS , Beijing 100071, P. R. China.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28422486</idno>
<idno type="pmid">28422486</idno>
<idno type="doi">10.1021/acsami.7b03987</idno>
<idno type="wicri:Area/Main/Corpus">000561</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000561</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Stable Nanocomposite Based on PEGylated and Silver Nanoparticles Loaded Graphene Oxide for Long-Term Antibacterial Activity.</title>
<author>
<name sortKey="Zhao, Rongtao" sort="Zhao, Rongtao" uniqKey="Zhao R" first="Rongtao" last="Zhao">Rongtao Zhao</name>
<affiliation>
<nlm:affiliation>Institute of Disease Control and Prevention, AMMS , Beijing 100071, P. R. China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lv, Min" sort="Lv, Min" uniqKey="Lv M" first="Min" last="Lv">Min Lv</name>
<affiliation>
<nlm:affiliation>Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, P. R. China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Yang" sort="Li, Yang" uniqKey="Li Y" first="Yang" last="Li">Yang Li</name>
<affiliation>
<nlm:affiliation>Institute of Disease Control and Prevention, AMMS , Beijing 100071, P. R. China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sun, Mingxuan" sort="Sun, Mingxuan" uniqKey="Sun M" first="Mingxuan" last="Sun">Mingxuan Sun</name>
<affiliation>
<nlm:affiliation>Institute of Disease Control and Prevention, AMMS , Beijing 100071, P. R. China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kong, Wen" sort="Kong, Wen" uniqKey="Kong W" first="Wen" last="Kong">Wen Kong</name>
<affiliation>
<nlm:affiliation>Institute of Disease Control and Prevention, AMMS , Beijing 100071, P. R. China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Lihua" sort="Wang, Lihua" uniqKey="Wang L" first="Lihua" last="Wang">Lihua Wang</name>
<affiliation>
<nlm:affiliation>Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, P. R. China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Song, Shiping" sort="Song, Shiping" uniqKey="Song S" first="Shiping" last="Song">Shiping Song</name>
<affiliation>
<nlm:affiliation>Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, P. R. China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fan, Chunhai" sort="Fan, Chunhai" uniqKey="Fan C" first="Chunhai" last="Fan">Chunhai Fan</name>
<affiliation>
<nlm:affiliation>Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, P. R. China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jia, Leili" sort="Jia, Leili" uniqKey="Jia L" first="Leili" last="Jia">Leili Jia</name>
<affiliation>
<nlm:affiliation>Institute of Disease Control and Prevention, AMMS , Beijing 100071, P. R. China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Qiu, Shaofu" sort="Qiu, Shaofu" uniqKey="Qiu S" first="Shaofu" last="Qiu">Shaofu Qiu</name>
<affiliation>
<nlm:affiliation>Institute of Disease Control and Prevention, AMMS , Beijing 100071, P. R. China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sun, Yansong" sort="Sun, Yansong" uniqKey="Sun Y" first="Yansong" last="Sun">Yansong Sun</name>
<affiliation>
<nlm:affiliation>Department of Science and Technology, AMMS , Beijing 100850, P. R. China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Song, Hongbin" sort="Song, Hongbin" uniqKey="Song H" first="Hongbin" last="Song">Hongbin Song</name>
<affiliation>
<nlm:affiliation>Institute of Disease Control and Prevention, AMMS , Beijing 100071, P. R. China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hao, Rongzhang" sort="Hao, Rongzhang" uniqKey="Hao R" first="Rongzhang" last="Hao">Rongzhang Hao</name>
<affiliation>
<nlm:affiliation>Institute of Disease Control and Prevention, AMMS , Beijing 100071, P. R. China.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">ACS applied materials & interfaces</title>
<idno type="eISSN">1944-8252</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anti-Bacterial Agents (MeSH)</term>
<term>Escherichia coli (MeSH)</term>
<term>Graphite (MeSH)</term>
<term>HeLa Cells (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Metal Nanoparticles (MeSH)</term>
<term>Nanocomposites (MeSH)</term>
<term>Oxides (MeSH)</term>
<term>Silver (MeSH)</term>
<term>Staphylococcus aureus (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Anti-Bacterial Agents</term>
<term>Graphite</term>
<term>Oxides</term>
<term>Silver</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Escherichia coli</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Metal Nanoparticles</term>
<term>Nanocomposites</term>
<term>Staphylococcus aureus</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The increasing occurrence of antibiotic-resistant pathogens, especially superbugs, is compromising the efficacy of traditional antibiotics. Silver nanoparticles (AgNPs) loaded graphene oxide (GO) nanocomposite (GO-Ag) has drawn great interest as a promising alternative antibacterial material. However, GO-Ag nanocomposite often irreversibly aggregates in physiological solutions, severely influencing its antibacterial capacity and practical application. Herein, a PEGylated and AgNPs loaded GO nanocomposite (GO-PEG-Ag) is synthesized through a facile approach utilizing microwave irradiation, while avoiding extra reducing agents. Through PEGylation, the synthesized GO-PEG-Ag nanocomposite dispersed stably over one month in a series of media and resisted centrifugation at 10 000×g for 5 min, which would benefit effective contact between the nanocomposite and the bacteria. In contrast, GO-Ag aggregated within 1 h of dispersion in physiological solutions. In comparison with GO-Ag, GO-PEG-Ag showed stronger bactericidal capability toward not only normal Gram-negative/positive bacteria such as E. coli and S. aureus (∼100% of E. coli and ∼95.3% of S. aureus reduction by 10 μg/mL nanocomposite for 2.5 h), but also superbugs. Moreover, GO-PEG-Ag showed lower cytotoxicity toward HeLa cells. Importantly, GO-PEG-Ag presented long-term antibacterial effectiveness, remaining ∼95% antibacterial activity after one-week storage in saline solution versus <35% for GO-Ag. The antibacterial mechanisms of GO-PEG-Ag were evidenced as damage to the bacterial structure and production of reactive oxygen species, causing cytoplasm leakage and metabolism decrease. The stable GO-PEG-Ag nanocomposite with powerful and long-term antibacterial capability provides a more practical and effective strategy for fighting superbugs-including pathogen threats in biomedicine and public health.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">28422486</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>01</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1944-8252</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>18</Issue>
<PubDate>
<Year>2017</Year>
<Month>May</Month>
<Day>10</Day>
</PubDate>
</JournalIssue>
<Title>ACS applied materials & interfaces</Title>
<ISOAbbreviation>ACS Appl Mater Interfaces</ISOAbbreviation>
</Journal>
<ArticleTitle>Stable Nanocomposite Based on PEGylated and Silver Nanoparticles Loaded Graphene Oxide for Long-Term Antibacterial Activity.</ArticleTitle>
<Pagination>
<MedlinePgn>15328-15341</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/acsami.7b03987</ELocationID>
<Abstract>
<AbstractText>The increasing occurrence of antibiotic-resistant pathogens, especially superbugs, is compromising the efficacy of traditional antibiotics. Silver nanoparticles (AgNPs) loaded graphene oxide (GO) nanocomposite (GO-Ag) has drawn great interest as a promising alternative antibacterial material. However, GO-Ag nanocomposite often irreversibly aggregates in physiological solutions, severely influencing its antibacterial capacity and practical application. Herein, a PEGylated and AgNPs loaded GO nanocomposite (GO-PEG-Ag) is synthesized through a facile approach utilizing microwave irradiation, while avoiding extra reducing agents. Through PEGylation, the synthesized GO-PEG-Ag nanocomposite dispersed stably over one month in a series of media and resisted centrifugation at 10 000×g for 5 min, which would benefit effective contact between the nanocomposite and the bacteria. In contrast, GO-Ag aggregated within 1 h of dispersion in physiological solutions. In comparison with GO-Ag, GO-PEG-Ag showed stronger bactericidal capability toward not only normal Gram-negative/positive bacteria such as E. coli and S. aureus (∼100% of E. coli and ∼95.3% of S. aureus reduction by 10 μg/mL nanocomposite for 2.5 h), but also superbugs. Moreover, GO-PEG-Ag showed lower cytotoxicity toward HeLa cells. Importantly, GO-PEG-Ag presented long-term antibacterial effectiveness, remaining ∼95% antibacterial activity after one-week storage in saline solution versus <35% for GO-Ag. The antibacterial mechanisms of GO-PEG-Ag were evidenced as damage to the bacterial structure and production of reactive oxygen species, causing cytoplasm leakage and metabolism decrease. The stable GO-PEG-Ag nanocomposite with powerful and long-term antibacterial capability provides a more practical and effective strategy for fighting superbugs-including pathogen threats in biomedicine and public health.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Rongtao</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Institute of Disease Control and Prevention, AMMS , Beijing 100071, P. R. China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lv</LastName>
<ForeName>Min</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, P. R. China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Yang</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Institute of Disease Control and Prevention, AMMS , Beijing 100071, P. R. China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Mingxuan</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Institute of Disease Control and Prevention, AMMS , Beijing 100071, P. R. China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kong</LastName>
<ForeName>Wen</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Institute of Disease Control and Prevention, AMMS , Beijing 100071, P. R. China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Lihua</ForeName>
<Initials>L</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-6198-7561</Identifier>
<AffiliationInfo>
<Affiliation>Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, P. R. China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Song</LastName>
<ForeName>Shiping</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, P. R. China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fan</LastName>
<ForeName>Chunhai</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-7171-7338</Identifier>
<AffiliationInfo>
<Affiliation>Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, P. R. China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jia</LastName>
<ForeName>Leili</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Institute of Disease Control and Prevention, AMMS , Beijing 100071, P. R. China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Qiu</LastName>
<ForeName>Shaofu</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Institute of Disease Control and Prevention, AMMS , Beijing 100071, P. R. China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Yansong</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Science and Technology, AMMS , Beijing 100850, P. R. China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Song</LastName>
<ForeName>Hongbin</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Institute of Disease Control and Prevention, AMMS , Beijing 100071, P. R. China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hao</LastName>
<ForeName>Rongzhang</ForeName>
<Initials>R</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-1527-427X</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Disease Control and Prevention, AMMS , Beijing 100071, P. R. China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>04</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>ACS Appl Mater Interfaces</MedlineTA>
<NlmUniqueID>101504991</NlmUniqueID>
<ISSNLinking>1944-8244</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000900">Anti-Bacterial Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010087">Oxides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3M4G523W1G</RegistryNumber>
<NameOfSubstance UI="D012834">Silver</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7782-42-5</RegistryNumber>
<NameOfSubstance UI="D006108">Graphite</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000900" MajorTopicYN="N">Anti-Bacterial Agents</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006108" MajorTopicYN="N">Graphite</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006367" MajorTopicYN="N">HeLa Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053768" MajorTopicYN="N">Metal Nanoparticles</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053761" MajorTopicYN="Y">Nanocomposites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010087" MajorTopicYN="N">Oxides</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012834" MajorTopicYN="N">Silver</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013211" MajorTopicYN="N">Staphylococcus aureus</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">PEGylation</Keyword>
<Keyword MajorTopicYN="N">antibacterial activity</Keyword>
<Keyword MajorTopicYN="N">antibiotic resistance</Keyword>
<Keyword MajorTopicYN="N">graphene oxide</Keyword>
<Keyword MajorTopicYN="N">long-term effectiveness</Keyword>
<Keyword MajorTopicYN="N">silver nanoparticles</Keyword>
<Keyword MajorTopicYN="N">stability</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>4</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>1</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>4</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28422486</ArticleId>
<ArticleId IdType="doi">10.1021/acsami.7b03987</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Terre/explor/SilverBacteriV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000561 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000561 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Terre
   |area=    SilverBacteriV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28422486
   |texte=   Stable Nanocomposite Based on PEGylated and Silver Nanoparticles Loaded Graphene Oxide for Long-Term Antibacterial Activity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:28422486" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SilverBacteriV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Feb 1 22:59:42 2021. Site generation: Mon Feb 1 23:01:29 2021