Serveur d'exploration SilverBacteriV1

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Vancomycin-modified Fe3O4@SiO2@Ag microflowers as effective antimicrobial agents.

Identifieur interne : 000560 ( Main/Corpus ); précédent : 000559; suivant : 000561

Vancomycin-modified Fe3O4@SiO2@Ag microflowers as effective antimicrobial agents.

Auteurs : Chongwen Wang ; Kehan Zhang ; Zhe Zhou ; Qingjun Li ; Liting Shao ; Rong Zhang Hao ; Rui Xiao ; Shengqi Wang

Source :

RBID : pubmed:28450783

English descriptors

Abstract

Nanomaterials combined with antibiotics exhibit synergistic effects and have gained increasing interest as promising antimicrobial agents. In this study, vancomycin-modified magnetic-based silver microflowers (Van/Fe3O4@SiO2@Ag microflowers) were rationally designed and prepared to achieve strong bactericidal ability, a wide antimicrobial spectrum, and good recyclability. High-performance Fe3O4@SiO2@Ag microflowers served as a multifunction-supporting matrix and exhibited sufficient magnetic response property due to their 200 nm Fe3O4 core. The microflowers also possessed a highly branched flower-like Ag shell that provided a large surface area for effective Ag ion release and bacterial contact. The modified-vancomycin layer was effectively bound to the cell wall of bacteria to increase the permeability of the cell membrane and facilitate the entry of the Ag ions into the bacterium, resulting in cell death. As such, the fabricated Van/Fe3O4@SiO2@Ag microflowers were predicted to be an effective and environment-friendly antibacterial agent. This hypothesis was verified through sterilization of Gram-negative Escherichia coli and Gram-positive methicillin-resistant Staphylococcus aureus, with minimum inhibitory concentrations of 10 and 20 μg mL-1, respectively. The microflowers also showed enhanced effect compared with bare Fe3O4@SiO2@Ag microflowers and free-form vancomycin, confirming the synergistic effects of the combination of the two components. Moreover, the antimicrobial effect was maintained at more than 90% after five cycling assays, indicating the high stability of the product. These findings reveal that Van/Fe3O4@SiO2@Ag microflowers exhibit promising applications in the antibacterial fields.

DOI: 10.2147/IJN.S132570
PubMed: 28450783
PubMed Central: PMC5399987

Links to Exploration step

pubmed:28450783

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Vancomycin-modified Fe
<sub>3</sub>
O
<sub>4</sub>
@SiO
<sub>2</sub>
@Ag microflowers as effective antimicrobial agents.</title>
<author>
<name sortKey="Wang, Chongwen" sort="Wang, Chongwen" uniqKey="Wang C" first="Chongwen" last="Wang">Chongwen Wang</name>
<affiliation>
<nlm:affiliation>College of Life Sciences & Bio-Engineering, Beijing University of Technology.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Radiation Medicine, Beijing.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Kehan" sort="Zhang, Kehan" uniqKey="Zhang K" first="Kehan" last="Zhang">Kehan Zhang</name>
<affiliation>
<nlm:affiliation>Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Radiation Medicine, Beijing.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Zhe" sort="Zhou, Zhe" uniqKey="Zhou Z" first="Zhe" last="Zhou">Zhe Zhou</name>
<affiliation>
<nlm:affiliation>Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Radiation Medicine, Beijing.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Qingjun" sort="Li, Qingjun" uniqKey="Li Q" first="Qingjun" last="Li">Qingjun Li</name>
<affiliation>
<nlm:affiliation>Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Radiation Medicine, Beijing.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shao, Liting" sort="Shao, Liting" uniqKey="Shao L" first="Liting" last="Shao">Liting Shao</name>
<affiliation>
<nlm:affiliation>Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Radiation Medicine, Beijing.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hao, Rong Zhang" sort="Hao, Rong Zhang" uniqKey="Hao R" first="Rong Zhang" last="Hao">Rong Zhang Hao</name>
<affiliation>
<nlm:affiliation>Institute for Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xiao, Rui" sort="Xiao, Rui" uniqKey="Xiao R" first="Rui" last="Xiao">Rui Xiao</name>
<affiliation>
<nlm:affiliation>Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Radiation Medicine, Beijing.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Shengqi" sort="Wang, Shengqi" uniqKey="Wang S" first="Shengqi" last="Wang">Shengqi Wang</name>
<affiliation>
<nlm:affiliation>College of Life Sciences & Bio-Engineering, Beijing University of Technology.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Radiation Medicine, Beijing.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28450783</idno>
<idno type="pmid">28450783</idno>
<idno type="doi">10.2147/IJN.S132570</idno>
<idno type="pmc">PMC5399987</idno>
<idno type="wicri:Area/Main/Corpus">000560</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000560</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Vancomycin-modified Fe
<sub>3</sub>
O
<sub>4</sub>
@SiO
<sub>2</sub>
@Ag microflowers as effective antimicrobial agents.</title>
<author>
<name sortKey="Wang, Chongwen" sort="Wang, Chongwen" uniqKey="Wang C" first="Chongwen" last="Wang">Chongwen Wang</name>
<affiliation>
<nlm:affiliation>College of Life Sciences & Bio-Engineering, Beijing University of Technology.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Radiation Medicine, Beijing.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Kehan" sort="Zhang, Kehan" uniqKey="Zhang K" first="Kehan" last="Zhang">Kehan Zhang</name>
<affiliation>
<nlm:affiliation>Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Radiation Medicine, Beijing.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Zhe" sort="Zhou, Zhe" uniqKey="Zhou Z" first="Zhe" last="Zhou">Zhe Zhou</name>
<affiliation>
<nlm:affiliation>Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Radiation Medicine, Beijing.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Qingjun" sort="Li, Qingjun" uniqKey="Li Q" first="Qingjun" last="Li">Qingjun Li</name>
<affiliation>
<nlm:affiliation>Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Radiation Medicine, Beijing.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shao, Liting" sort="Shao, Liting" uniqKey="Shao L" first="Liting" last="Shao">Liting Shao</name>
<affiliation>
<nlm:affiliation>Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Radiation Medicine, Beijing.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hao, Rong Zhang" sort="Hao, Rong Zhang" uniqKey="Hao R" first="Rong Zhang" last="Hao">Rong Zhang Hao</name>
<affiliation>
<nlm:affiliation>Institute for Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xiao, Rui" sort="Xiao, Rui" uniqKey="Xiao R" first="Rui" last="Xiao">Rui Xiao</name>
<affiliation>
<nlm:affiliation>Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Radiation Medicine, Beijing.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Shengqi" sort="Wang, Shengqi" uniqKey="Wang S" first="Shengqi" last="Wang">Shengqi Wang</name>
<affiliation>
<nlm:affiliation>College of Life Sciences & Bio-Engineering, Beijing University of Technology.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Radiation Medicine, Beijing.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">International journal of nanomedicine</title>
<idno type="eISSN">1178-2013</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anti-Bacterial Agents (chemistry)</term>
<term>Anti-Bacterial Agents (pharmacokinetics)</term>
<term>Anti-Bacterial Agents (pharmacology)</term>
<term>Cell Wall (drug effects)</term>
<term>Drug Evaluation, Preclinical (methods)</term>
<term>Drug Synergism (MeSH)</term>
<term>Escherichia coli (drug effects)</term>
<term>Ferrosoferric Oxide (chemistry)</term>
<term>Magnetite Nanoparticles (administration & dosage)</term>
<term>Magnetite Nanoparticles (chemistry)</term>
<term>Methicillin-Resistant Staphylococcus aureus (drug effects)</term>
<term>Microbial Sensitivity Tests (MeSH)</term>
<term>Nanostructures (administration & dosage)</term>
<term>Nanostructures (chemistry)</term>
<term>Silicon Dioxide (chemistry)</term>
<term>Silicon Dioxide (pharmacology)</term>
<term>Silver (chemistry)</term>
<term>Silver (pharmacology)</term>
<term>Vancomycin (chemistry)</term>
<term>Vancomycin (pharmacokinetics)</term>
<term>Vancomycin (pharmacology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="administration & dosage" xml:lang="en">
<term>Magnetite Nanoparticles</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Anti-Bacterial Agents</term>
<term>Ferrosoferric Oxide</term>
<term>Magnetite Nanoparticles</term>
<term>Silicon Dioxide</term>
<term>Silver</term>
<term>Vancomycin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacokinetics" xml:lang="en">
<term>Anti-Bacterial Agents</term>
<term>Vancomycin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Anti-Bacterial Agents</term>
<term>Silicon Dioxide</term>
<term>Silver</term>
<term>Vancomycin</term>
</keywords>
<keywords scheme="MESH" qualifier="administration & dosage" xml:lang="en">
<term>Nanostructures</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Nanostructures</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Cell Wall</term>
<term>Escherichia coli</term>
<term>Methicillin-Resistant Staphylococcus aureus</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Drug Evaluation, Preclinical</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Drug Synergism</term>
<term>Microbial Sensitivity Tests</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Nanomaterials combined with antibiotics exhibit synergistic effects and have gained increasing interest as promising antimicrobial agents. In this study, vancomycin-modified magnetic-based silver microflowers (Van/Fe
<sub>3</sub>
O
<sub>4</sub>
@SiO
<sub>2</sub>
@Ag microflowers) were rationally designed and prepared to achieve strong bactericidal ability, a wide antimicrobial spectrum, and good recyclability. High-performance Fe
<sub>3</sub>
O
<sub>4</sub>
@SiO
<sub>2</sub>
@Ag microflowers served as a multifunction-supporting matrix and exhibited sufficient magnetic response property due to their 200 nm Fe
<sub>3</sub>
O
<sub>4</sub>
core. The microflowers also possessed a highly branched flower-like Ag shell that provided a large surface area for effective Ag ion release and bacterial contact. The modified-vancomycin layer was effectively bound to the cell wall of bacteria to increase the permeability of the cell membrane and facilitate the entry of the Ag ions into the bacterium, resulting in cell death. As such, the fabricated Van/Fe
<sub>3</sub>
O
<sub>4</sub>
@SiO
<sub>2</sub>
@Ag microflowers were predicted to be an effective and environment-friendly antibacterial agent. This hypothesis was verified through sterilization of Gram-negative
<i>Escherichia coli</i>
and Gram-positive methicillin-resistant
<i>Staphylococcus aureus</i>
, with minimum inhibitory concentrations of 10 and 20 μg mL
<sup>-1</sup>
, respectively. The microflowers also showed enhanced effect compared with bare Fe
<sub>3</sub>
O
<sub>4</sub>
@SiO
<sub>2</sub>
@Ag microflowers and free-form vancomycin, confirming the synergistic effects of the combination of the two components. Moreover, the antimicrobial effect was maintained at more than 90% after five cycling assays, indicating the high stability of the product. These findings reveal that Van/Fe
<sub>3</sub>
O
<sub>4</sub>
@SiO
<sub>2</sub>
@Ag microflowers exhibit promising applications in the antibacterial fields.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">28450783</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>09</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1178-2013</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<PubDate>
<Year>2017</Year>
</PubDate>
</JournalIssue>
<Title>International journal of nanomedicine</Title>
<ISOAbbreviation>Int J Nanomedicine</ISOAbbreviation>
</Journal>
<ArticleTitle>Vancomycin-modified Fe
<sub>3</sub>
O
<sub>4</sub>
@SiO
<sub>2</sub>
@Ag microflowers as effective antimicrobial agents.</ArticleTitle>
<Pagination>
<MedlinePgn>3077-3094</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.2147/IJN.S132570</ELocationID>
<Abstract>
<AbstractText>Nanomaterials combined with antibiotics exhibit synergistic effects and have gained increasing interest as promising antimicrobial agents. In this study, vancomycin-modified magnetic-based silver microflowers (Van/Fe
<sub>3</sub>
O
<sub>4</sub>
@SiO
<sub>2</sub>
@Ag microflowers) were rationally designed and prepared to achieve strong bactericidal ability, a wide antimicrobial spectrum, and good recyclability. High-performance Fe
<sub>3</sub>
O
<sub>4</sub>
@SiO
<sub>2</sub>
@Ag microflowers served as a multifunction-supporting matrix and exhibited sufficient magnetic response property due to their 200 nm Fe
<sub>3</sub>
O
<sub>4</sub>
core. The microflowers also possessed a highly branched flower-like Ag shell that provided a large surface area for effective Ag ion release and bacterial contact. The modified-vancomycin layer was effectively bound to the cell wall of bacteria to increase the permeability of the cell membrane and facilitate the entry of the Ag ions into the bacterium, resulting in cell death. As such, the fabricated Van/Fe
<sub>3</sub>
O
<sub>4</sub>
@SiO
<sub>2</sub>
@Ag microflowers were predicted to be an effective and environment-friendly antibacterial agent. This hypothesis was verified through sterilization of Gram-negative
<i>Escherichia coli</i>
and Gram-positive methicillin-resistant
<i>Staphylococcus aureus</i>
, with minimum inhibitory concentrations of 10 and 20 μg mL
<sup>-1</sup>
, respectively. The microflowers also showed enhanced effect compared with bare Fe
<sub>3</sub>
O
<sub>4</sub>
@SiO
<sub>2</sub>
@Ag microflowers and free-form vancomycin, confirming the synergistic effects of the combination of the two components. Moreover, the antimicrobial effect was maintained at more than 90% after five cycling assays, indicating the high stability of the product. These findings reveal that Van/Fe
<sub>3</sub>
O
<sub>4</sub>
@SiO
<sub>2</sub>
@Ag microflowers exhibit promising applications in the antibacterial fields.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Chongwen</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>College of Life Sciences & Bio-Engineering, Beijing University of Technology.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Radiation Medicine, Beijing.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Kehan</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Radiation Medicine, Beijing.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Zhe</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Radiation Medicine, Beijing.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Qingjun</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Radiation Medicine, Beijing.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shao</LastName>
<ForeName>Liting</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Radiation Medicine, Beijing.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hao</LastName>
<ForeName>Rong Zhang</ForeName>
<Initials>RZ</Initials>
<AffiliationInfo>
<Affiliation>Institute for Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xiao</LastName>
<ForeName>Rui</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Radiation Medicine, Beijing.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Shengqi</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>College of Life Sciences & Bio-Engineering, Beijing University of Technology.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Radiation Medicine, Beijing.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>U01 AA020929</GrantID>
<Acronym>AA</Acronym>
<Agency>NIAAA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U24 AA020929</GrantID>
<Acronym>AA</Acronym>
<Agency>NIAAA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>04</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>New Zealand</Country>
<MedlineTA>Int J Nanomedicine</MedlineTA>
<NlmUniqueID>101263847</NlmUniqueID>
<ISSNLinking>1176-9114</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000900">Anti-Bacterial Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D058185">Magnetite Nanoparticles</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3M4G523W1G</RegistryNumber>
<NameOfSubstance UI="D012834">Silver</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>6Q205EH1VU</RegistryNumber>
<NameOfSubstance UI="D014640">Vancomycin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7631-86-9</RegistryNumber>
<NameOfSubstance UI="D012822">Silicon Dioxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>XM0M87F357</RegistryNumber>
<NameOfSubstance UI="D052203">Ferrosoferric Oxide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000900" MajorTopicYN="N">Anti-Bacterial Agents</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000493" MajorTopicYN="N">pharmacokinetics</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002473" MajorTopicYN="N">Cell Wall</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004353" MajorTopicYN="N">Drug Evaluation, Preclinical</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004357" MajorTopicYN="N">Drug Synergism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052203" MajorTopicYN="N">Ferrosoferric Oxide</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058185" MajorTopicYN="N">Magnetite Nanoparticles</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055624" MajorTopicYN="N">Methicillin-Resistant Staphylococcus aureus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008826" MajorTopicYN="N">Microbial Sensitivity Tests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049329" MajorTopicYN="N">Nanostructures</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012822" MajorTopicYN="N">Silicon Dioxide</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012834" MajorTopicYN="N">Silver</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014640" MajorTopicYN="N">Vancomycin</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000493" MajorTopicYN="N">pharmacokinetics</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Ag shell</Keyword>
<Keyword MajorTopicYN="N">antibiotic-resistant bacteria</Keyword>
<Keyword MajorTopicYN="N">biological properties</Keyword>
<Keyword MajorTopicYN="N">magnetic composites</Keyword>
<Keyword MajorTopicYN="N">surface area</Keyword>
</KeywordList>
<CoiStatement>Disclosure The authors report no conflicts of interest in this work.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>4</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>4</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>9</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28450783</ArticleId>
<ArticleId IdType="doi">10.2147/IJN.S132570</ArticleId>
<ArticleId IdType="pii">ijn-12-3077</ArticleId>
<ArticleId IdType="pmc">PMC5399987</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Langmuir. 2015 Jul 28;31(29):8129-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26132410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2011 Nov 15;2:538</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22086338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Appl Mater Interfaces. 2015 Feb 4;7(4):2415-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25608105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2016 Aug 16;50(16):8840-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27390928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Appl Mater Interfaces. 2015 Jan 21;7(2):1087-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25522372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Aug 21;257(5073):1064-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1509257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Colloids Surf B Biointerfaces. 2016 Jun 1;142:392-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26970828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Biomater. 2013 Jul;9(7):7573-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23535232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Nano. 2008 Sep 23;2(9):1777-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19206416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2012 Apr;78(8):2768-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22286985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Nanomedicine. 2014 Jan 16;9:549-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24549109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2011 Feb 15;186(1):306-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21115223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2014 Aug 01;4:5920</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25082297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2016 Sep;101:207-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27294538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Pharm. 2016 Mar 30;501(1-2):326-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26875538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Nano. 2010 Jul 27;4(7):4317-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20593851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanoscale. 2015 Nov 28;7(44):18694-707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26502285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2006 Dec 14;110(49):24923-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17149913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Appl Mater Interfaces. 2009 Oct;1(10):2174-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20355851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Appl Mater Interfaces. 2016 Aug 10;8(31):19958-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27420923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanoscale. 2013 May 7;5(9):3834-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23525222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2012 Oct;30(10):499-511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22884769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanoscale. 2016 Dec 1;8(47):19816-19828</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27878199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Soc Rev. 2012 Apr 21;41(8):3193-209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22331210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanomedicine. 2010 Feb;6(1):103-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19447203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanoscale. 2015 Apr 28;7(16):7415-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25830178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Appl Mater Interfaces. 2015 Jan 28;7(3):2046-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25584802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Appl Mater Interfaces. 2015 Sep 23;7(37):20919-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26322791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanoscale. 2012 Aug 21;4(16):5210-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22772658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Appl Mater Interfaces. 2015 May 13;7(18):9469-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25905634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Mater. 2010 Dec 21;22(48):5463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21089062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Analyst. 2015 Jan 21;140(2):440-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25422829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Analyst. 2016 Oct 24;141(22):6226-6238</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27704076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Appl Mater Interfaces. 2015 Jun 17;7(23):12873-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26005899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2011 Jul;32(21):4704-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21507482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2015 Dec 15;299:298-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26142159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dalton Trans. 2015 May 21;44(19):9140-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25901793</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Terre/explor/SilverBacteriV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000560 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000560 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Terre
   |area=    SilverBacteriV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28450783
   |texte=   Vancomycin-modified Fe3O4@SiO2@Ag microflowers as effective antimicrobial agents.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:28450783" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SilverBacteriV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Feb 1 22:59:42 2021. Site generation: Mon Feb 1 23:01:29 2021