Serveur d'exploration SilverBacteriV1

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Antibacterial Activity and Cytocompatibility of Bone Cement Enriched with Antibiotic, Nanosilver, and Nanocopper for Bone Regeneration.

Identifieur interne : 000245 ( Main/Corpus ); précédent : 000244; suivant : 000246

Antibacterial Activity and Cytocompatibility of Bone Cement Enriched with Antibiotic, Nanosilver, and Nanocopper for Bone Regeneration.

Auteurs : Marcin Wekwejt ; Anna Michno ; Karolina Truchan ; Anna Pałubicka ; Beata Wieczko- Urek ; Anna Maria Osyczka ; Andrzej Zieli Ski

Source :

RBID : pubmed:31382557

Abstract

Bacterial infections due to bone replacement surgeries require modifications of bone cement with antibacterial components. This study aimed to investigate whether the incorporation of gentamicin or nanometals into bone cement may reduce and to what extent bacterial growth without the loss of overall cytocompatibility and adverse effects in vitro. The bone cement Cemex was used as the base material, modified either with gentamicin sulfate or nanometals: Silver or copper. The inhibition of bacterial adhesion and growth was examined against five different bacterial strains along with integrity of erythrocytes, viability of blood platelets, and dental pulp stem cells. Bone cement modified with nanoAg or nanoCu revealed greater bactericidal effects and prevented the biofilm formation better compared to antibiotic-loaded bone cement. The cement containing nanoAg displayed good cytocompatibility without noticeable hemolysis of erythrocytes or blood platelet disfunction and good viability of dental pulp stem cells (DPSC). On the contrary, the nanoCu cement enhanced hemolysis of erythrocytes, reduced the platelets aggregation, and decreased DPSC viability. Based on these studies, we suggest the modification of bone cement with nanoAg may be a good strategy to provide improved implant fixative for bone regeneration purposes.

DOI: 10.3390/nano9081114
PubMed: 31382557
PubMed Central: PMC6722923

Links to Exploration step

pubmed:31382557

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Antibacterial Activity and Cytocompatibility of Bone Cement Enriched with Antibiotic, Nanosilver, and Nanocopper for Bone Regeneration.</title>
<author>
<name sortKey="Wekwejt, Marcin" sort="Wekwejt, Marcin" uniqKey="Wekwejt M" first="Marcin" last="Wekwejt">Marcin Wekwejt</name>
<affiliation>
<nlm:affiliation>Biomaterials Division, Department of Materials Engineering and Bonding, Gdańsk University of Technology, 80-233 Gdańsk, Poland. marcin.wekwejt@pg.edu.pl.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Michno, Anna" sort="Michno, Anna" uniqKey="Michno A" first="Anna" last="Michno">Anna Michno</name>
<affiliation>
<nlm:affiliation>Chair of Clinical Biochemistry, Department of Laboratory Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Truchan, Karolina" sort="Truchan, Karolina" uniqKey="Truchan K" first="Karolina" last="Truchan">Karolina Truchan</name>
<affiliation>
<nlm:affiliation>Department of Biology and Cell Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Palubicka, Anna" sort="Palubicka, Anna" uniqKey="Palubicka A" first="Anna" last="Pałubicka">Anna Pałubicka</name>
<affiliation>
<nlm:affiliation>Department of Laboratory Diagnostics and Microbiology with Blood Bank, Specialist Hospital in Kościerzyna, 83-400 Kościerzyna, Poland.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Surgical Oncologic, Medical University of Gdańsk, 80-210 Gdańsk, Poland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey=" Wieczko Urek, Beata" sort=" Wieczko Urek, Beata" uniqKey=" Wieczko Urek B" first="Beata" last=" Wieczko- Urek">Beata Wieczko- Urek</name>
<affiliation>
<nlm:affiliation>Biomaterials Division, Department of Materials Engineering and Bonding, Gdańsk University of Technology, 80-233 Gdańsk, Poland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Osyczka, Anna Maria" sort="Osyczka, Anna Maria" uniqKey="Osyczka A" first="Anna Maria" last="Osyczka">Anna Maria Osyczka</name>
<affiliation>
<nlm:affiliation>Department of Biology and Cell Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zieli Ski, Andrzej" sort="Zieli Ski, Andrzej" uniqKey="Zieli Ski A" first="Andrzej" last="Zieli Ski">Andrzej Zieli Ski</name>
<affiliation>
<nlm:affiliation>Biomaterials Division, Department of Materials Engineering and Bonding, Gdańsk University of Technology, 80-233 Gdańsk, Poland.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31382557</idno>
<idno type="pmid">31382557</idno>
<idno type="doi">10.3390/nano9081114</idno>
<idno type="pmc">PMC6722923</idno>
<idno type="wicri:Area/Main/Corpus">000245</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000245</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Antibacterial Activity and Cytocompatibility of Bone Cement Enriched with Antibiotic, Nanosilver, and Nanocopper for Bone Regeneration.</title>
<author>
<name sortKey="Wekwejt, Marcin" sort="Wekwejt, Marcin" uniqKey="Wekwejt M" first="Marcin" last="Wekwejt">Marcin Wekwejt</name>
<affiliation>
<nlm:affiliation>Biomaterials Division, Department of Materials Engineering and Bonding, Gdańsk University of Technology, 80-233 Gdańsk, Poland. marcin.wekwejt@pg.edu.pl.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Michno, Anna" sort="Michno, Anna" uniqKey="Michno A" first="Anna" last="Michno">Anna Michno</name>
<affiliation>
<nlm:affiliation>Chair of Clinical Biochemistry, Department of Laboratory Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Truchan, Karolina" sort="Truchan, Karolina" uniqKey="Truchan K" first="Karolina" last="Truchan">Karolina Truchan</name>
<affiliation>
<nlm:affiliation>Department of Biology and Cell Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Palubicka, Anna" sort="Palubicka, Anna" uniqKey="Palubicka A" first="Anna" last="Pałubicka">Anna Pałubicka</name>
<affiliation>
<nlm:affiliation>Department of Laboratory Diagnostics and Microbiology with Blood Bank, Specialist Hospital in Kościerzyna, 83-400 Kościerzyna, Poland.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Surgical Oncologic, Medical University of Gdańsk, 80-210 Gdańsk, Poland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey=" Wieczko Urek, Beata" sort=" Wieczko Urek, Beata" uniqKey=" Wieczko Urek B" first="Beata" last=" Wieczko- Urek">Beata Wieczko- Urek</name>
<affiliation>
<nlm:affiliation>Biomaterials Division, Department of Materials Engineering and Bonding, Gdańsk University of Technology, 80-233 Gdańsk, Poland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Osyczka, Anna Maria" sort="Osyczka, Anna Maria" uniqKey="Osyczka A" first="Anna Maria" last="Osyczka">Anna Maria Osyczka</name>
<affiliation>
<nlm:affiliation>Department of Biology and Cell Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zieli Ski, Andrzej" sort="Zieli Ski, Andrzej" uniqKey="Zieli Ski A" first="Andrzej" last="Zieli Ski">Andrzej Zieli Ski</name>
<affiliation>
<nlm:affiliation>Biomaterials Division, Department of Materials Engineering and Bonding, Gdańsk University of Technology, 80-233 Gdańsk, Poland.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nanomaterials (Basel, Switzerland)</title>
<idno type="ISSN">2079-4991</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Bacterial infections due to bone replacement surgeries require modifications of bone cement with antibacterial components. This study aimed to investigate whether the incorporation of gentamicin or nanometals into bone cement may reduce and to what extent bacterial growth without the loss of overall cytocompatibility and adverse effects in vitro. The bone cement Cemex was used as the base material, modified either with gentamicin sulfate or nanometals: Silver or copper. The inhibition of bacterial adhesion and growth was examined against five different bacterial strains along with integrity of erythrocytes, viability of blood platelets, and dental pulp stem cells. Bone cement modified with nanoAg or nanoCu revealed greater bactericidal effects and prevented the biofilm formation better compared to antibiotic-loaded bone cement. The cement containing nanoAg displayed good cytocompatibility without noticeable hemolysis of erythrocytes or blood platelet disfunction and good viability of dental pulp stem cells (DPSC). On the contrary, the nanoCu cement enhanced hemolysis of erythrocytes, reduced the platelets aggregation, and decreased DPSC viability. Based on these studies, we suggest the modification of bone cement with nanoAg may be a good strategy to provide improved implant fixative for bone regeneration purposes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">31382557</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Print">2079-4991</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2019</Year>
<Month>Aug</Month>
<Day>03</Day>
</PubDate>
</JournalIssue>
<Title>Nanomaterials (Basel, Switzerland)</Title>
<ISOAbbreviation>Nanomaterials (Basel)</ISOAbbreviation>
</Journal>
<ArticleTitle>Antibacterial Activity and Cytocompatibility of Bone Cement Enriched with Antibiotic, Nanosilver, and Nanocopper for Bone Regeneration.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E1114</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/nano9081114</ELocationID>
<Abstract>
<AbstractText>Bacterial infections due to bone replacement surgeries require modifications of bone cement with antibacterial components. This study aimed to investigate whether the incorporation of gentamicin or nanometals into bone cement may reduce and to what extent bacterial growth without the loss of overall cytocompatibility and adverse effects in vitro. The bone cement Cemex was used as the base material, modified either with gentamicin sulfate or nanometals: Silver or copper. The inhibition of bacterial adhesion and growth was examined against five different bacterial strains along with integrity of erythrocytes, viability of blood platelets, and dental pulp stem cells. Bone cement modified with nanoAg or nanoCu revealed greater bactericidal effects and prevented the biofilm formation better compared to antibiotic-loaded bone cement. The cement containing nanoAg displayed good cytocompatibility without noticeable hemolysis of erythrocytes or blood platelet disfunction and good viability of dental pulp stem cells (DPSC). On the contrary, the nanoCu cement enhanced hemolysis of erythrocytes, reduced the platelets aggregation, and decreased DPSC viability. Based on these studies, we suggest the modification of bone cement with nanoAg may be a good strategy to provide improved implant fixative for bone regeneration purposes.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wekwejt</LastName>
<ForeName>Marcin</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Biomaterials Division, Department of Materials Engineering and Bonding, Gdańsk University of Technology, 80-233 Gdańsk, Poland. marcin.wekwejt@pg.edu.pl.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Michno</LastName>
<ForeName>Anna</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Chair of Clinical Biochemistry, Department of Laboratory Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Truchan</LastName>
<ForeName>Karolina</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology and Cell Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pałubicka</LastName>
<ForeName>Anna</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Laboratory Diagnostics and Microbiology with Blood Bank, Specialist Hospital in Kościerzyna, 83-400 Kościerzyna, Poland.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Surgical Oncologic, Medical University of Gdańsk, 80-210 Gdańsk, Poland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Świeczko-Żurek</LastName>
<ForeName>Beata</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Biomaterials Division, Department of Materials Engineering and Bonding, Gdańsk University of Technology, 80-233 Gdańsk, Poland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Osyczka</LastName>
<ForeName>Anna Maria</ForeName>
<Initials>AM</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology and Cell Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zieliński</LastName>
<ForeName>Andrzej</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Biomaterials Division, Department of Materials Engineering and Bonding, Gdańsk University of Technology, 80-233 Gdańsk, Poland.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>ST-57; 2016/21/B/NZ5/00217</GrantID>
<Agency>This work was supported in part by the Medical University of Gdańsk fund and the AMO NSC grant</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>08</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Nanomaterials (Basel)</MedlineTA>
<NlmUniqueID>101610216</NlmUniqueID>
<ISSNLinking>2079-4991</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">antibacterial properties</Keyword>
<Keyword MajorTopicYN="N">bone cement</Keyword>
<Keyword MajorTopicYN="N">cell viability</Keyword>
<Keyword MajorTopicYN="N">hemolysis</Keyword>
<Keyword MajorTopicYN="N">nanometals</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>07</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>07</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>07</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>8</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>8</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>8</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31382557</ArticleId>
<ArticleId IdType="pii">nano9081114</ArticleId>
<ArticleId IdType="doi">10.3390/nano9081114</ArticleId>
<ArticleId IdType="pmc">PMC6722923</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Neurochem. 2001 May;77(3):804-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11331409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2002 Mar;23(6):1479-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11829444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2004 Aug;25(18):4383-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15046929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Lett. 2006 May 25;163(2):109-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16289865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Langmuir. 2008 Apr 15;24(8):4340-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18341370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Orthop Res. 2009 Aug;27(8):1002-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19165770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Toxicol. 2009 Aug;29(6):531-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19444854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Biomater. 2010 Mar;6(3):804-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19703595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Biomater. 2010 Aug;6(8):3178-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20170759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Orthop Res. 2011 Jul;29(7):1070-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21567453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Sci. 2011 Sep;123(1):133-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21652737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2011 Sep 15;416(2):186-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21684249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2013 Jan;34(2):422-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23083929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomech. 2013 Mar 15;46(5):1035-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23332232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mater Sci Eng C Mater Biol Appl. 2013 Jul 1;33(5):3025-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23623128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 May 13;8(5):e63311</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23675476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Nanomedicine. 2013;8:2227-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23818779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mater Sci Eng C Mater Biol Appl. 2013 Oct;33(7):3795-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23910279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomed Mater Res A. 2014 Oct;102(10):3556-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24243858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanotechnology. 2014 Apr 4;25(13):135101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24584282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomed Mater Res B Appl Biomater. 2015 Feb;103(2):273-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24819471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mech Behav Biomed Mater. 2014 Sep;37:141-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24911668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Dec 08;9(12):e114740</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25485700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mater Sci Eng C Mater Biol Appl. 2015 Mar;48:188-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25579913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mater Sci Eng C Mater Biol Appl. 2015 Apr;49:210-216</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25686941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mater Sci Eng C Mater Biol Appl. 2015 Apr;49:534-540</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25686981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Genet. 2015 Feb 17;6:42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25741363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Arthroplasty. 2015 Jul;30(7):1243-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25743107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Mater. 2015 Mar 11;10(2):025001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25760730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Arthroplasty. 2015 Aug;30(8):1423-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25791672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Res Int. 2015;2015:143720</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26125021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>World J Stem Cells. 2015 Jun 26;7(5):839-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26131314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Orthop Trauma. 2013 Dec;4(4):157-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26403875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2016 Mar;81:58-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26724454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mater Sci Eng C Mater Biol Appl. 2016 May;62:274-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26952424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biomater. 2016;2016:3858301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26981124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 May 05;6:25518</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27145858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mater Sci Eng C Mater Biol Appl. 2016 Dec 1;69:1391-409</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27612841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Clin Transplant. 2016 Oct;14(5):484-490</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27733106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mater Sci Eng C Mater Biol Appl. 2017 Apr 1;73:164-172</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28183594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Dent. 2017 Apr;59:68-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28223199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Nanomedicine. 2017 Mar 27;12:2353-2360</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28392692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2017 Aug 15;336:158-167</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28494303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol In Vitro. 2017 Oct;44:248-255</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28739488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Colloids Surf B Biointerfaces. 2017 Nov 1;159:293-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28802737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Pharm. 2017 Oct 30;532(1):241-248</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28851574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biol Macromol. 2018 Feb;107(Pt A):1278-1293</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29017884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vascul Pharmacol. 2018 Feb;101:1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29174014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Dent. 2018 Feb;69:102-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29253621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Biomater. 2018 May;72:362-370</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29559365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanomaterials (Basel). 2018 May 06;8(5):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29734781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioact Mater. 2017 May 15;2(3):156-161</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29744425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Materials (Basel). 2018 Jun 06;11(6):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29882763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Orthop Translat. 2014 Dec 12;3(1):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30035034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Adv Res. 2017 Nov 02;9:1-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30046482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Discov Today. 2019 Jan;24(1):85-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30176358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanomaterials (Basel). 2018 Aug 31;8(9):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30200373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Nanomedicine. 2018 Aug 31;13:4913-4926</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30214197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2018 Oct 24;23(11):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30355974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Pharm. 2019 Jan 30;555:356-367</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30453018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mech Behav Biomed Mater. 2019 Mar;91:91-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30550989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mater Sci Eng C Mater Biol Appl. 2019 Apr;97:1036-1051</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30678895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2019 Mar;197:405-416</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30708184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Dent. 2019 Mar;82:45-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30738850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2019 Mar 22;20(6):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30909528</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Terre/explor/SilverBacteriV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000245 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000245 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Terre
   |area=    SilverBacteriV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31382557
   |texte=   Antibacterial Activity and Cytocompatibility of Bone Cement Enriched with Antibiotic, Nanosilver, and Nanocopper for Bone Regeneration.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:31382557" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SilverBacteriV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Feb 1 22:59:42 2021. Site generation: Mon Feb 1 23:01:29 2021