Serveur d'exploration SilverBacteriV1

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mussel-Inspired Fabrication of SERS Swabs for Highly Sensitive and Conformal Rapid Detection of Thiram Bactericides.

Identifieur interne : 000230 ( Main/Corpus ); précédent : 000229; suivant : 000231

Mussel-Inspired Fabrication of SERS Swabs for Highly Sensitive and Conformal Rapid Detection of Thiram Bactericides.

Auteurs : Jun Liu ; Tiantian Si ; Lingzi Zhang ; Zhiliang Zhang

Source :

RBID : pubmed:31533241

Abstract

As an important sort of dithiocarbamate bactericide, thiram has been widely used for fruits, vegetables and mature crops to control various fungal diseases; however, the thiram residues in the environment pose a serious threat to human health. In this work, silver nanoparticles (AgNPs) were grown in-situ on cotton swab (CS) surfaces, based on the mussel-inspired polydopamine (PDA) molecule and designed as highly sensitive surface-enhanced Raman scattering (SERS) swabs for the conformal rapid detection of bactericide residues. With this strategy, the obtained CS@PDA@AgNPs swabs demonstrated highly sensitive and reproducible Raman signals toward Nile blue A (NBA) probe molecules, and the detection limit was as low as 1.0 × 10-10 M. More critically, these CS@PDA@AgNPs swabs could be served as flexible SERS substrates for the conformal rapid detection of thiram bactericides from various fruit surfaces through a simple swabbing approach. The results showed that the detection limit of thiram residues from pear, grape and peach surfaces was approximately down to the level of 0.12 ng/cm2, 0.24 ng/cm2 and 0.15 ng/cm2 respectively, demonstrating a high sensitivity and excellent reliability toward dithiocarbamate bactericides. Not only could these SERS swabs significantly promote the collection efficiency of thiram residues from irregular shaped matrices, but they could also greatly enhance the analytical sensitivity and reliability, and would have great potential for the on-site detection of residual bactericides in the environment and in bioscience fields.

DOI: 10.3390/nano9091331
PubMed: 31533241
PubMed Central: PMC6781073

Links to Exploration step

pubmed:31533241

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mussel-Inspired Fabrication of SERS Swabs for Highly Sensitive and Conformal Rapid Detection of Thiram Bactericides.</title>
<author>
<name sortKey="Liu, Jun" sort="Liu, Jun" uniqKey="Liu J" first="Jun" last="Liu">Jun Liu</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. liujun6621@126.com.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>School of Light Industry Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. liujun6621@126.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Si, Tiantian" sort="Si, Tiantian" uniqKey="Si T" first="Tiantian" last="Si">Tiantian Si</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. sttsitiantian@163.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Lingzi" sort="Zhang, Lingzi" uniqKey="Zhang L" first="Lingzi" last="Zhang">Lingzi Zhang</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. 1139195967@qq.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Zhiliang" sort="Zhang, Zhiliang" uniqKey="Zhang Z" first="Zhiliang" last="Zhang">Zhiliang Zhang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. zhzhl@iccas.ac.cn.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. zhzhl@iccas.ac.cn.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31533241</idno>
<idno type="pmid">31533241</idno>
<idno type="doi">10.3390/nano9091331</idno>
<idno type="pmc">PMC6781073</idno>
<idno type="wicri:Area/Main/Corpus">000230</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000230</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mussel-Inspired Fabrication of SERS Swabs for Highly Sensitive and Conformal Rapid Detection of Thiram Bactericides.</title>
<author>
<name sortKey="Liu, Jun" sort="Liu, Jun" uniqKey="Liu J" first="Jun" last="Liu">Jun Liu</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. liujun6621@126.com.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>School of Light Industry Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. liujun6621@126.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Si, Tiantian" sort="Si, Tiantian" uniqKey="Si T" first="Tiantian" last="Si">Tiantian Si</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. sttsitiantian@163.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Lingzi" sort="Zhang, Lingzi" uniqKey="Zhang L" first="Lingzi" last="Zhang">Lingzi Zhang</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. 1139195967@qq.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Zhiliang" sort="Zhang, Zhiliang" uniqKey="Zhang Z" first="Zhiliang" last="Zhang">Zhiliang Zhang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. zhzhl@iccas.ac.cn.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. zhzhl@iccas.ac.cn.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nanomaterials (Basel, Switzerland)</title>
<idno type="ISSN">2079-4991</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">As an important sort of dithiocarbamate bactericide, thiram has been widely used for fruits, vegetables and mature crops to control various fungal diseases; however, the thiram residues in the environment pose a serious threat to human health. In this work, silver nanoparticles (AgNPs) were grown in-situ on cotton swab (CS) surfaces, based on the mussel-inspired polydopamine (PDA) molecule and designed as highly sensitive surface-enhanced Raman scattering (SERS) swabs for the conformal rapid detection of bactericide residues. With this strategy, the obtained CS@PDA@AgNPs swabs demonstrated highly sensitive and reproducible Raman signals toward Nile blue A (NBA) probe molecules, and the detection limit was as low as 1.0 × 10
<sup>-10</sup>
M. More critically, these CS@PDA@AgNPs swabs could be served as flexible SERS substrates for the conformal rapid detection of thiram bactericides from various fruit surfaces through a simple swabbing approach. The results showed that the detection limit of thiram residues from pear, grape and peach surfaces was approximately down to the level of 0.12 ng/cm
<sup>2</sup>
, 0.24 ng/cm
<sup>2</sup>
and 0.15 ng/cm
<sup>2</sup>
respectively, demonstrating a high sensitivity and excellent reliability toward dithiocarbamate bactericides. Not only could these SERS swabs significantly promote the collection efficiency of thiram residues from irregular shaped matrices, but they could also greatly enhance the analytical sensitivity and reliability, and would have great potential for the on-site detection of residual bactericides in the environment and in bioscience fields.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">31533241</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Print">2079-4991</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2019</Year>
<Month>Sep</Month>
<Day>17</Day>
</PubDate>
</JournalIssue>
<Title>Nanomaterials (Basel, Switzerland)</Title>
<ISOAbbreviation>Nanomaterials (Basel)</ISOAbbreviation>
</Journal>
<ArticleTitle>Mussel-Inspired Fabrication of SERS Swabs for Highly Sensitive and Conformal Rapid Detection of Thiram Bactericides.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E1331</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/nano9091331</ELocationID>
<Abstract>
<AbstractText>As an important sort of dithiocarbamate bactericide, thiram has been widely used for fruits, vegetables and mature crops to control various fungal diseases; however, the thiram residues in the environment pose a serious threat to human health. In this work, silver nanoparticles (AgNPs) were grown in-situ on cotton swab (CS) surfaces, based on the mussel-inspired polydopamine (PDA) molecule and designed as highly sensitive surface-enhanced Raman scattering (SERS) swabs for the conformal rapid detection of bactericide residues. With this strategy, the obtained CS@PDA@AgNPs swabs demonstrated highly sensitive and reproducible Raman signals toward Nile blue A (NBA) probe molecules, and the detection limit was as low as 1.0 × 10
<sup>-10</sup>
M. More critically, these CS@PDA@AgNPs swabs could be served as flexible SERS substrates for the conformal rapid detection of thiram bactericides from various fruit surfaces through a simple swabbing approach. The results showed that the detection limit of thiram residues from pear, grape and peach surfaces was approximately down to the level of 0.12 ng/cm
<sup>2</sup>
, 0.24 ng/cm
<sup>2</sup>
and 0.15 ng/cm
<sup>2</sup>
respectively, demonstrating a high sensitivity and excellent reliability toward dithiocarbamate bactericides. Not only could these SERS swabs significantly promote the collection efficiency of thiram residues from irregular shaped matrices, but they could also greatly enhance the analytical sensitivity and reliability, and would have great potential for the on-site detection of residual bactericides in the environment and in bioscience fields.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Jun</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. liujun6621@126.com.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>School of Light Industry Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. liujun6621@126.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Si</LastName>
<ForeName>Tiantian</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. sttsitiantian@163.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Lingzi</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. 1139195967@qq.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Zhiliang</ForeName>
<Initials>Z</Initials>
<Identifier Source="ORCID">0000-0001-5031-6773</Identifier>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. zhzhl@iccas.ac.cn.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. zhzhl@iccas.ac.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>09</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Nanomaterials (Basel)</MedlineTA>
<NlmUniqueID>101610216</NlmUniqueID>
<ISSNLinking>2079-4991</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">flexible SERS swabs</Keyword>
<Keyword MajorTopicYN="N">in-situ grown</Keyword>
<Keyword MajorTopicYN="N">on-site detection</Keyword>
<Keyword MajorTopicYN="N">polydopamine</Keyword>
<Keyword MajorTopicYN="N">thiram bactericides</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>07</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>09</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>09</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>9</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>9</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>9</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31533241</ArticleId>
<ArticleId IdType="pii">nano9091331</ArticleId>
<ArticleId IdType="doi">10.3390/nano9091331</ArticleId>
<ArticleId IdType="pmc">PMC6781073</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nanomaterials (Basel). 2018 Jul 12;8(7):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30002295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2016 Feb 16;88(4):2149-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26810698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chim Acta. 2019 Feb 21;1049:170-178</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30612648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanotechnology. 2018 Oct 12;29(41):415603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30058556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Appl Mater Interfaces. 2018 Mar 7;10(9):7661-7669</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28960952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2016 Jan;75:203-222</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26513414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Langmuir. 2013 Jun 11;29(23):7061-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23706081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanotechnology. 2019 Jan 11;30(2):025302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30411711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2018 Nov 20;90(22):13647-13654</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30379069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Talanta. 2019 May 15;197:225-233</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30771928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Talanta. 2019 Mar 1;194:680-688</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30609590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Analyst. 2018 Apr 30;143(9):2012-2022</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29431838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Talanta. 2019 Nov 1;204:189-197</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31357281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Appl Mater Interfaces. 2014 Dec 24;6(24):21931-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25455731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2014 May 14;114(9):5057-115</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24517847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Analyst. 2014 Oct 21;139(20):5148-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25105174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Appl Mater Interfaces. 2017 Nov 15;9(45):39618-39625</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29058868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Analyst. 2011 Feb 7;136(3):527-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21113557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Appl Mater Interfaces. 2014 Aug 13;6(15):12541-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24988366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanoscale. 2018 Aug 16;10(32):15195-15204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29845168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Oct 19;318(5849):426-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17947576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Appl Mater Interfaces. 2018 Mar 14;10(10):9129-9135</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29470045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Polym. 2018 Jun 1;189:79-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29580429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanomaterials (Basel). 2019 Mar 06;9(3):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30845722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Mater. 2014 Feb;26(5):701-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24493052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Monit. 2003 Oct;5(5):717-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14587840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanomaterials (Basel). 2018 Jun 03;8(6):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29865286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanomaterials (Basel). 2019 Feb 01;9(2):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30717277</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Terre/explor/SilverBacteriV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000230 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000230 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Terre
   |area=    SilverBacteriV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31533241
   |texte=   Mussel-Inspired Fabrication of SERS Swabs for Highly Sensitive and Conformal Rapid Detection of Thiram Bactericides.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:31533241" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SilverBacteriV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Feb 1 22:59:42 2021. Site generation: Mon Feb 1 23:01:29 2021