Serveur d'exploration SilverBacteriV1

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Colonizing microbiota protect zebrafish larvae against silver nanoparticle toxicity.

Identifieur interne : 000124 ( Main/Corpus ); précédent : 000123; suivant : 000125

Colonizing microbiota protect zebrafish larvae against silver nanoparticle toxicity.

Auteurs : Bregje W. Brinkmann ; Bj Rn E V. Koch ; Herman P. Spaink ; Willie J G M. Peijnenburg ; Martina G. Vijver

Source :

RBID : pubmed:32324436

English descriptors

Abstract

Metal-based nanoparticles exhibiting antimicrobial activity are of emerging concern to human and environmental health. In addition to their direct adverse effects to plants and animals, indirect effects resulting from disruption of beneficial host-microbiota interactions may contribute to the toxicity of these particles. To explore this hypothesis, we compared the acute toxicity of silver and zinc oxide nanoparticles (nAg and nZnO) to zebrafish larvae that were either germ-free or colonized by microbiota. Over two days of exposure, germ-free zebrafish larvae were more sensitive to nAg than microbially colonized larvae, whereas silver ion toxicity did not differ between germ-free and colonized larvae. Using response addition modeling, we confirmed that the protective effect of colonizing microbiota against nAg toxicity was particle-specific. Nearly all mortality among germ-free larvae occurred within the first day of exposure. In contrast, mortality among colonized larvae increased gradually over both exposure days. Concurrent with this gradual increase in mortality was a marked reduction in the numbers of live host-associated microbes, suggesting that bactericidal effects of nAg on protective microbes resulted in increased mortality among colonized larvae over time. No difference in sensitivity between germ-free and colonized larvae was observed for nZnO, which dissolved rapidly in the exposure medium. At sublethal concentrations, these particles moreover did not exert detectable bactericidal effects on larvae-associated microbes. Altogether, our study shows the importance of taking host-microbe interactions into account in assessing toxic effects of nanoparticles to microbially colonized hosts, and provides a method to screen for microbiota interference with nanomaterial toxicity.

DOI: 10.1080/17435390.2020.1755469
PubMed: 32324436

Links to Exploration step

pubmed:32324436

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Colonizing microbiota protect zebrafish larvae against silver nanoparticle toxicity.</title>
<author>
<name sortKey="Brinkmann, Bregje W" sort="Brinkmann, Bregje W" uniqKey="Brinkmann B" first="Bregje W" last="Brinkmann">Bregje W. Brinkmann</name>
<affiliation>
<nlm:affiliation>Institute of Environmental Sciences (CML), Leiden University, Leiden, the Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Koch, Bj Rn E V" sort="Koch, Bj Rn E V" uniqKey="Koch B" first="Bj Rn E V" last="Koch">Bj Rn E V. Koch</name>
<affiliation>
<nlm:affiliation>Institute of Biology (IBL), Leiden University, Leiden, the Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Spaink, Herman P" sort="Spaink, Herman P" uniqKey="Spaink H" first="Herman P" last="Spaink">Herman P. Spaink</name>
<affiliation>
<nlm:affiliation>Institute of Biology (IBL), Leiden University, Leiden, the Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Peijnenburg, Willie J G M" sort="Peijnenburg, Willie J G M" uniqKey="Peijnenburg W" first="Willie J G M" last="Peijnenburg">Willie J G M. Peijnenburg</name>
<affiliation>
<nlm:affiliation>Institute of Environmental Sciences (CML), Leiden University, Leiden, the Netherlands.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Center for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), Bilthoven, the Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vijver, Martina G" sort="Vijver, Martina G" uniqKey="Vijver M" first="Martina G" last="Vijver">Martina G. Vijver</name>
<affiliation>
<nlm:affiliation>Institute of Environmental Sciences (CML), Leiden University, Leiden, the Netherlands.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32324436</idno>
<idno type="pmid">32324436</idno>
<idno type="doi">10.1080/17435390.2020.1755469</idno>
<idno type="wicri:Area/Main/Corpus">000124</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000124</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Colonizing microbiota protect zebrafish larvae against silver nanoparticle toxicity.</title>
<author>
<name sortKey="Brinkmann, Bregje W" sort="Brinkmann, Bregje W" uniqKey="Brinkmann B" first="Bregje W" last="Brinkmann">Bregje W. Brinkmann</name>
<affiliation>
<nlm:affiliation>Institute of Environmental Sciences (CML), Leiden University, Leiden, the Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Koch, Bj Rn E V" sort="Koch, Bj Rn E V" uniqKey="Koch B" first="Bj Rn E V" last="Koch">Bj Rn E V. Koch</name>
<affiliation>
<nlm:affiliation>Institute of Biology (IBL), Leiden University, Leiden, the Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Spaink, Herman P" sort="Spaink, Herman P" uniqKey="Spaink H" first="Herman P" last="Spaink">Herman P. Spaink</name>
<affiliation>
<nlm:affiliation>Institute of Biology (IBL), Leiden University, Leiden, the Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Peijnenburg, Willie J G M" sort="Peijnenburg, Willie J G M" uniqKey="Peijnenburg W" first="Willie J G M" last="Peijnenburg">Willie J G M. Peijnenburg</name>
<affiliation>
<nlm:affiliation>Institute of Environmental Sciences (CML), Leiden University, Leiden, the Netherlands.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Center for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), Bilthoven, the Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vijver, Martina G" sort="Vijver, Martina G" uniqKey="Vijver M" first="Martina G" last="Vijver">Martina G. Vijver</name>
<affiliation>
<nlm:affiliation>Institute of Environmental Sciences (CML), Leiden University, Leiden, the Netherlands.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nanotoxicology</title>
<idno type="eISSN">1743-5404</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Host-Parasite Interactions (drug effects)</term>
<term>Humans (MeSH)</term>
<term>Larva (drug effects)</term>
<term>Larva (microbiology)</term>
<term>Metal Nanoparticles (toxicity)</term>
<term>Microbiota (drug effects)</term>
<term>Silver (toxicity)</term>
<term>Zebrafish (microbiology)</term>
<term>Zinc Oxide (toxicity)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Silver</term>
<term>Zinc Oxide</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Host-Parasite Interactions</term>
<term>Larva</term>
<term>Microbiota</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Larva</term>
<term>Zebrafish</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicity" xml:lang="en">
<term>Metal Nanoparticles</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Humans</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Metal-based nanoparticles exhibiting antimicrobial activity are of emerging concern to human and environmental health. In addition to their direct adverse effects to plants and animals, indirect effects resulting from disruption of beneficial host-microbiota interactions may contribute to the toxicity of these particles. To explore this hypothesis, we compared the acute toxicity of silver and zinc oxide nanoparticles (nAg and nZnO) to zebrafish larvae that were either germ-free or colonized by microbiota. Over two days of exposure, germ-free zebrafish larvae were more sensitive to nAg than microbially colonized larvae, whereas silver ion toxicity did not differ between germ-free and colonized larvae. Using response addition modeling, we confirmed that the protective effect of colonizing microbiota against nAg toxicity was particle-specific. Nearly all mortality among germ-free larvae occurred within the first day of exposure. In contrast, mortality among colonized larvae increased gradually over both exposure days. Concurrent with this gradual increase in mortality was a marked reduction in the numbers of live host-associated microbes, suggesting that bactericidal effects of nAg on protective microbes resulted in increased mortality among colonized larvae over time. No difference in sensitivity between germ-free and colonized larvae was observed for nZnO, which dissolved rapidly in the exposure medium. At sublethal concentrations, these particles moreover did not exert detectable bactericidal effects on larvae-associated microbes. Altogether, our study shows the importance of taking host-microbe interactions into account in assessing toxic effects of nanoparticles to microbially colonized hosts, and provides a method to screen for microbiota interference with nanomaterial toxicity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">32324436</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>09</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1743-5404</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2020</Year>
<Month>08</Month>
</PubDate>
</JournalIssue>
<Title>Nanotoxicology</Title>
<ISOAbbreviation>Nanotoxicology</ISOAbbreviation>
</Journal>
<ArticleTitle>Colonizing microbiota protect zebrafish larvae against silver nanoparticle toxicity.</ArticleTitle>
<Pagination>
<MedlinePgn>725-739</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1080/17435390.2020.1755469</ELocationID>
<Abstract>
<AbstractText>Metal-based nanoparticles exhibiting antimicrobial activity are of emerging concern to human and environmental health. In addition to their direct adverse effects to plants and animals, indirect effects resulting from disruption of beneficial host-microbiota interactions may contribute to the toxicity of these particles. To explore this hypothesis, we compared the acute toxicity of silver and zinc oxide nanoparticles (nAg and nZnO) to zebrafish larvae that were either germ-free or colonized by microbiota. Over two days of exposure, germ-free zebrafish larvae were more sensitive to nAg than microbially colonized larvae, whereas silver ion toxicity did not differ between germ-free and colonized larvae. Using response addition modeling, we confirmed that the protective effect of colonizing microbiota against nAg toxicity was particle-specific. Nearly all mortality among germ-free larvae occurred within the first day of exposure. In contrast, mortality among colonized larvae increased gradually over both exposure days. Concurrent with this gradual increase in mortality was a marked reduction in the numbers of live host-associated microbes, suggesting that bactericidal effects of nAg on protective microbes resulted in increased mortality among colonized larvae over time. No difference in sensitivity between germ-free and colonized larvae was observed for nZnO, which dissolved rapidly in the exposure medium. At sublethal concentrations, these particles moreover did not exert detectable bactericidal effects on larvae-associated microbes. Altogether, our study shows the importance of taking host-microbe interactions into account in assessing toxic effects of nanoparticles to microbially colonized hosts, and provides a method to screen for microbiota interference with nanomaterial toxicity.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Brinkmann</LastName>
<ForeName>Bregje W</ForeName>
<Initials>BW</Initials>
<AffiliationInfo>
<Affiliation>Institute of Environmental Sciences (CML), Leiden University, Leiden, the Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Koch</LastName>
<ForeName>Bjørn E V</ForeName>
<Initials>BEV</Initials>
<AffiliationInfo>
<Affiliation>Institute of Biology (IBL), Leiden University, Leiden, the Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Spaink</LastName>
<ForeName>Herman P</ForeName>
<Initials>HP</Initials>
<AffiliationInfo>
<Affiliation>Institute of Biology (IBL), Leiden University, Leiden, the Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Peijnenburg</LastName>
<ForeName>Willie J G M</ForeName>
<Initials>WJGM</Initials>
<AffiliationInfo>
<Affiliation>Institute of Environmental Sciences (CML), Leiden University, Leiden, the Netherlands.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Center for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), Bilthoven, the Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vijver</LastName>
<ForeName>Martina G</ForeName>
<Initials>MG</Initials>
<AffiliationInfo>
<Affiliation>Institute of Environmental Sciences (CML), Leiden University, Leiden, the Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>figshare</DataBankName>
<AccessionNumberList>
<AccessionNumber>10.6084/m9.figshare.c.4923261</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>04</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nanotoxicology</MedlineTA>
<NlmUniqueID>101233132</NlmUniqueID>
<ISSNLinking>1743-5390</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>3M4G523W1G</RegistryNumber>
<NameOfSubstance UI="D012834">Silver</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>SOI2LOH54Z</RegistryNumber>
<NameOfSubstance UI="D015034">Zinc Oxide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006790" MajorTopicYN="N">Host-Parasite Interactions</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007814" MajorTopicYN="N">Larva</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053768" MajorTopicYN="N">Metal Nanoparticles</DescriptorName>
<QualifierName UI="Q000633" MajorTopicYN="Y">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064307" MajorTopicYN="N">Microbiota</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012834" MajorTopicYN="N">Silver</DescriptorName>
<QualifierName UI="Q000633" MajorTopicYN="Y">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015027" MajorTopicYN="N">Zebrafish</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015034" MajorTopicYN="N">Zinc Oxide</DescriptorName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Fish embryo acute toxicity test</Keyword>
<Keyword MajorTopicYN="Y">germ-free</Keyword>
<Keyword MajorTopicYN="Y">gnotobiotic techniques</Keyword>
<Keyword MajorTopicYN="Y">host–microbiota interactions</Keyword>
<Keyword MajorTopicYN="Y">particle-specific toxicity</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>4</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>9</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>4</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32324436</ArticleId>
<ArticleId IdType="doi">10.1080/17435390.2020.1755469</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Terre/explor/SilverBacteriV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000124 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000124 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Terre
   |area=    SilverBacteriV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32324436
   |texte=   Colonizing microbiota protect zebrafish larvae against silver nanoparticle toxicity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32324436" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SilverBacteriV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Feb 1 22:59:42 2021. Site generation: Mon Feb 1 23:01:29 2021