Serveur d'exploration Nissiros

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Monitoring oxygen fugacity conditions in pre-, syn- and postcaldera magma chamber of Nisyros volcano, Aegean island arc, Greece

Identifieur interne : 000016 ( Istex/Corpus ); précédent : 000015; suivant : 000017

Monitoring oxygen fugacity conditions in pre-, syn- and postcaldera magma chamber of Nisyros volcano, Aegean island arc, Greece

Auteurs : Karen St. Seymour ; Andrée. Lalonde

Source :

RBID : ISTEX:E6924DA972830B158A2F4E1E821D3D74519997E5

English descriptors

Abstract

Abstract: The magmatic oxygen fugacities of the pre-, syn-, and postcaldera products of the Quaternary volcano of Nisyros in the Aegean Volcanic Arc, eastern Mediterranean Sea, have been measured from analyzed compositions of titaniferous magnetite-ilmenite equilibrium pairs. Quench temperatures in the precaldera rhyodacitic flows range from 877 to 836°C and oxygen fugacities from −11.4 to −11.8 log units. One sample of the climactic pumice displays average quench temperatures of 853°C with fO2 of −11.7 log units. Crystallization temperatures of the dacitic domes that intercept the Nisyros caldera range from 843 to 804°C while oxygen fugacities range from −11.4 to −12.1 log units. The rocks of the Nisyros volcano record no significant change in oxygen fugacity relative to buffer curves immediately prior, during and after the caldera-forming event. This is surprising given the considerable potential for interaction between the magmas and atmospheric oxygen during caldera collapse and the concomitant massive exsolution of volatiles. However, the Nisyros fugacity data may not be atypical of stratovolcanoes with products of similar composition and histories of caldera-forming events. We speculate that only in the volcanoes where caldera collapse coincides with magma-meteoric water interaction do the climactic or early postcaldera units show anomalously high oxygen fugacities.

Url:
DOI: 10.1016/0377-0273(91)90085-E

Links to Exploration step

ISTEX:E6924DA972830B158A2F4E1E821D3D74519997E5

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Monitoring oxygen fugacity conditions in pre-, syn- and postcaldera magma chamber of Nisyros volcano, Aegean island arc, Greece</title>
<author>
<name sortKey="Seymour, Karen St" sort="Seymour, Karen St" uniqKey="Seymour K" first="Karen St." last="Seymour">Karen St. Seymour</name>
<affiliation>
<mods:affiliation>Department of Geology, Concordia University, Montreal, Que. H4B 1R6, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lalonde, Andree" sort="Lalonde, Andree" uniqKey="Lalonde A" first="Andrée." last="Lalonde">Andrée. Lalonde</name>
<affiliation>
<mods:affiliation>Ottawa-Carleton Geoscience Centre, Department of Geology, University of Ottawa, Ottawa, Ont. K1N 6N5, Canada</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:E6924DA972830B158A2F4E1E821D3D74519997E5</idno>
<date when="1991" year="1991">1991</date>
<idno type="doi">10.1016/0377-0273(91)90085-E</idno>
<idno type="url">https://api.istex.fr/document/E6924DA972830B158A2F4E1E821D3D74519997E5/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000016</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000016</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Monitoring oxygen fugacity conditions in pre-, syn- and postcaldera magma chamber of Nisyros volcano, Aegean island arc, Greece</title>
<author>
<name sortKey="Seymour, Karen St" sort="Seymour, Karen St" uniqKey="Seymour K" first="Karen St." last="Seymour">Karen St. Seymour</name>
<affiliation>
<mods:affiliation>Department of Geology, Concordia University, Montreal, Que. H4B 1R6, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lalonde, Andree" sort="Lalonde, Andree" uniqKey="Lalonde A" first="Andrée." last="Lalonde">Andrée. Lalonde</name>
<affiliation>
<mods:affiliation>Ottawa-Carleton Geoscience Centre, Department of Geology, University of Ottawa, Ottawa, Ont. K1N 6N5, Canada</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Volcanology and Geothermal Research</title>
<title level="j" type="abbrev">VOLGEO</title>
<idno type="ISSN">0377-0273</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1991">1991</date>
<biblScope unit="volume">46</biblScope>
<biblScope unit="issue">3–4</biblScope>
<biblScope unit="page" from="231">231</biblScope>
<biblScope unit="page" to="240">240</biblScope>
</imprint>
<idno type="ISSN">0377-0273</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0377-0273</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aegean island</term>
<term>Agio</term>
<term>Agios ioannis rhyodacite flows</term>
<term>Atmospheric oxygen</term>
<term>Caldera</term>
<term>Caldera collapse</term>
<term>Carmichael</term>
<term>Catastrophic event</term>
<term>Concordia university</term>
<term>Crater lake</term>
<term>Crystallization temperatures</term>
<term>Exsolution</term>
<term>Felsic</term>
<term>Ferromagnesian silicates</term>
<term>Feti oxides</term>
<term>Fugacity</term>
<term>Magma</term>
<term>Magma chamber</term>
<term>Magma redox conditions</term>
<term>Magmatic system</term>
<term>Massive exsolution</term>
<term>Monitoring oxygen fugacity conditions</term>
<term>Nisyros</term>
<term>Nisyros stratovolcano</term>
<term>Nisyros volcano</term>
<term>Older event</term>
<term>Opaque oxides</term>
<term>Oxide</term>
<term>Oxide phenocrysts</term>
<term>Oxygen fugacities</term>
<term>Oxygen fugacity</term>
<term>Oxygen fugacity values</term>
<term>Phenocryst assemblage</term>
<term>Plane light</term>
<term>Postcaldera</term>
<term>Postcaldera dacitic domes</term>
<term>Postcaldera domes</term>
<term>Postcaldera magma chamber</term>
<term>Postcaldera units</term>
<term>Precaldera</term>
<term>Pumice</term>
<term>Rhyodacite</term>
<term>Rhyodacitic</term>
<term>Seymour</term>
<term>Significant change</term>
<term>Silicate</term>
<term>Similar composition</term>
<term>Subvolcanic magma chambers</term>
<term>Syncaldera felsic pumice</term>
<term>Volcanic</term>
<term>Volcanic products</term>
<term>Volcanic rocks</term>
<term>Volcano</term>
<term>Water exsolution</term>
<term>Xilm</term>
<term>Xusp</term>
<term>Xusp xilm</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Aegean island</term>
<term>Agio</term>
<term>Agios ioannis rhyodacite flows</term>
<term>Atmospheric oxygen</term>
<term>Caldera</term>
<term>Caldera collapse</term>
<term>Carmichael</term>
<term>Catastrophic event</term>
<term>Concordia university</term>
<term>Crater lake</term>
<term>Crystallization temperatures</term>
<term>Exsolution</term>
<term>Felsic</term>
<term>Ferromagnesian silicates</term>
<term>Feti oxides</term>
<term>Fugacity</term>
<term>Magma</term>
<term>Magma chamber</term>
<term>Magma redox conditions</term>
<term>Magmatic system</term>
<term>Massive exsolution</term>
<term>Monitoring oxygen fugacity conditions</term>
<term>Nisyros</term>
<term>Nisyros stratovolcano</term>
<term>Nisyros volcano</term>
<term>Older event</term>
<term>Opaque oxides</term>
<term>Oxide</term>
<term>Oxide phenocrysts</term>
<term>Oxygen fugacities</term>
<term>Oxygen fugacity</term>
<term>Oxygen fugacity values</term>
<term>Phenocryst assemblage</term>
<term>Plane light</term>
<term>Postcaldera</term>
<term>Postcaldera dacitic domes</term>
<term>Postcaldera domes</term>
<term>Postcaldera magma chamber</term>
<term>Postcaldera units</term>
<term>Precaldera</term>
<term>Pumice</term>
<term>Rhyodacite</term>
<term>Rhyodacitic</term>
<term>Seymour</term>
<term>Significant change</term>
<term>Silicate</term>
<term>Similar composition</term>
<term>Subvolcanic magma chambers</term>
<term>Syncaldera felsic pumice</term>
<term>Volcanic</term>
<term>Volcanic products</term>
<term>Volcanic rocks</term>
<term>Volcano</term>
<term>Water exsolution</term>
<term>Xilm</term>
<term>Xusp</term>
<term>Xusp xilm</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: The magmatic oxygen fugacities of the pre-, syn-, and postcaldera products of the Quaternary volcano of Nisyros in the Aegean Volcanic Arc, eastern Mediterranean Sea, have been measured from analyzed compositions of titaniferous magnetite-ilmenite equilibrium pairs. Quench temperatures in the precaldera rhyodacitic flows range from 877 to 836°C and oxygen fugacities from −11.4 to −11.8 log units. One sample of the climactic pumice displays average quench temperatures of 853°C with fO2 of −11.7 log units. Crystallization temperatures of the dacitic domes that intercept the Nisyros caldera range from 843 to 804°C while oxygen fugacities range from −11.4 to −12.1 log units. The rocks of the Nisyros volcano record no significant change in oxygen fugacity relative to buffer curves immediately prior, during and after the caldera-forming event. This is surprising given the considerable potential for interaction between the magmas and atmospheric oxygen during caldera collapse and the concomitant massive exsolution of volatiles. However, the Nisyros fugacity data may not be atypical of stratovolcanoes with products of similar composition and histories of caldera-forming events. We speculate that only in the volcanoes where caldera collapse coincides with magma-meteoric water interaction do the climactic or early postcaldera units show anomalously high oxygen fugacities.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>fugacity</json:string>
<json:string>magma</json:string>
<json:string>nisyros</json:string>
<json:string>caldera</json:string>
<json:string>postcaldera</json:string>
<json:string>pumice</json:string>
<json:string>precaldera</json:string>
<json:string>oxygen fugacity</json:string>
<json:string>exsolution</json:string>
<json:string>xusp</json:string>
<json:string>caldera collapse</json:string>
<json:string>xilm</json:string>
<json:string>rhyodacite</json:string>
<json:string>felsic</json:string>
<json:string>xusp xilm</json:string>
<json:string>agio</json:string>
<json:string>oxygen fugacities</json:string>
<json:string>nisyros volcano</json:string>
<json:string>rhyodacitic</json:string>
<json:string>oxide</json:string>
<json:string>magma chamber</json:string>
<json:string>seymour</json:string>
<json:string>silicate</json:string>
<json:string>volcano</json:string>
<json:string>concordia university</json:string>
<json:string>plane light</json:string>
<json:string>volcanic products</json:string>
<json:string>massive exsolution</json:string>
<json:string>oxygen fugacity values</json:string>
<json:string>catastrophic event</json:string>
<json:string>water exsolution</json:string>
<json:string>crater lake</json:string>
<json:string>atmospheric oxygen</json:string>
<json:string>aegean island</json:string>
<json:string>crystallization temperatures</json:string>
<json:string>older event</json:string>
<json:string>similar composition</json:string>
<json:string>phenocryst assemblage</json:string>
<json:string>postcaldera domes</json:string>
<json:string>opaque oxides</json:string>
<json:string>postcaldera units</json:string>
<json:string>volcanic rocks</json:string>
<json:string>postcaldera magma chamber</json:string>
<json:string>oxide phenocrysts</json:string>
<json:string>agios ioannis rhyodacite flows</json:string>
<json:string>syncaldera felsic pumice</json:string>
<json:string>magmatic system</json:string>
<json:string>subvolcanic magma chambers</json:string>
<json:string>significant change</json:string>
<json:string>postcaldera dacitic domes</json:string>
<json:string>magma redox conditions</json:string>
<json:string>monitoring oxygen fugacity conditions</json:string>
<json:string>feti oxides</json:string>
<json:string>ferromagnesian silicates</json:string>
<json:string>nisyros stratovolcano</json:string>
<json:string>volcanic</json:string>
<json:string>carmichael</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Karen St. Seymour</name>
<affiliations>
<json:string>Department of Geology, Concordia University, Montreal, Que. H4B 1R6, Canada</json:string>
</affiliations>
</json:item>
<json:item>
<name>AndréE. Lalonde</name>
<affiliations>
<json:string>Ottawa-Carleton Geoscience Centre, Department of Geology, University of Ottawa, Ottawa, Ont. K1N 6N5, Canada</json:string>
</affiliations>
</json:item>
</author>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>The magmatic oxygen fugacities of the pre-, syn-, and postcaldera products of the Quaternary volcano of Nisyros in the Aegean Volcanic Arc, eastern Mediterranean Sea, have been measured from analyzed compositions of titaniferous magnetite-ilmenite equilibrium pairs. Quench temperatures in the precaldera rhyodacitic flows range from 877 to 836°C and oxygen fugacities from −11.4 to −11.8 log units. One sample of the climactic pumice displays average quench temperatures of 853°C with fO2 of −11.7 log units. Crystallization temperatures of the dacitic domes that intercept the Nisyros caldera range from 843 to 804°C while oxygen fugacities range from −11.4 to −12.1 log units. The rocks of the Nisyros volcano record no significant change in oxygen fugacity relative to buffer curves immediately prior, during and after the caldera-forming event. This is surprising given the considerable potential for interaction between the magmas and atmospheric oxygen during caldera collapse and the concomitant massive exsolution of volatiles. However, the Nisyros fugacity data may not be atypical of stratovolcanoes with products of similar composition and histories of caldera-forming events. We speculate that only in the volcanoes where caldera collapse coincides with magma-meteoric water interaction do the climactic or early postcaldera units show anomalously high oxygen fugacities.</abstract>
<qualityIndicators>
<score>6.138</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>540 x 749 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>1384</abstractCharCount>
<pdfWordCount>3250</pdfWordCount>
<pdfCharCount>22082</pdfCharCount>
<pdfPageCount>10</pdfPageCount>
<abstractWordCount>199</abstractWordCount>
</qualityIndicators>
<title>Monitoring oxygen fugacity conditions in pre-, syn- and postcaldera magma chamber of Nisyros volcano, Aegean island arc, Greece</title>
<pii>
<json:string>0377-0273(91)90085-E</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Journal of Volcanology and Geothermal Research</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>1991</publicationDate>
<issn>
<json:string>0377-0273</json:string>
</issn>
<pii>
<json:string>S0377-0273(00)X0132-1</json:string>
</pii>
<volume>46</volume>
<issue>3–4</issue>
<pages>
<first>231</first>
<last>240</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>geosciences, multidisciplinary</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>earth & environmental sciences</json:string>
<json:string>geochemistry & geophysics</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences exactes et technologie</json:string>
<json:string>terre, ocean, espace</json:string>
<json:string>sciences de la terre</json:string>
</inist>
</categories>
<publicationDate>1991</publicationDate>
<copyrightDate>1991</copyrightDate>
<doi>
<json:string>10.1016/0377-0273(91)90085-E</json:string>
</doi>
<id>E6924DA972830B158A2F4E1E821D3D74519997E5</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/E6924DA972830B158A2F4E1E821D3D74519997E5/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/E6924DA972830B158A2F4E1E821D3D74519997E5/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/E6924DA972830B158A2F4E1E821D3D74519997E5/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Monitoring oxygen fugacity conditions in pre-, syn- and postcaldera magma chamber of Nisyros volcano, Aegean island arc, Greece</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>ELSEVIER</p>
</availability>
<date>1991</date>
</publicationStmt>
<notesStmt>
<note type="content">Section title: Research paper</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Monitoring oxygen fugacity conditions in pre-, syn- and postcaldera magma chamber of Nisyros volcano, Aegean island arc, Greece</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Karen St.</forename>
<surname>Seymour</surname>
</persName>
<affiliation>Department of Geology, Concordia University, Montreal, Que. H4B 1R6, Canada</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">AndréE.</forename>
<surname>Lalonde</surname>
</persName>
<affiliation>Ottawa-Carleton Geoscience Centre, Department of Geology, University of Ottawa, Ottawa, Ont. K1N 6N5, Canada</affiliation>
</author>
<idno type="istex">E6924DA972830B158A2F4E1E821D3D74519997E5</idno>
<idno type="DOI">10.1016/0377-0273(91)90085-E</idno>
<idno type="PII">0377-0273(91)90085-E</idno>
</analytic>
<monogr>
<title level="j">Journal of Volcanology and Geothermal Research</title>
<title level="j" type="abbrev">VOLGEO</title>
<idno type="pISSN">0377-0273</idno>
<idno type="PII">S0377-0273(00)X0132-1</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1991"></date>
<biblScope unit="volume">46</biblScope>
<biblScope unit="issue">3–4</biblScope>
<biblScope unit="page" from="231">231</biblScope>
<biblScope unit="page" to="240">240</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1991</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>The magmatic oxygen fugacities of the pre-, syn-, and postcaldera products of the Quaternary volcano of Nisyros in the Aegean Volcanic Arc, eastern Mediterranean Sea, have been measured from analyzed compositions of titaniferous magnetite-ilmenite equilibrium pairs. Quench temperatures in the precaldera rhyodacitic flows range from 877 to 836°C and oxygen fugacities from −11.4 to −11.8 log units. One sample of the climactic pumice displays average quench temperatures of 853°C with fO2 of −11.7 log units. Crystallization temperatures of the dacitic domes that intercept the Nisyros caldera range from 843 to 804°C while oxygen fugacities range from −11.4 to −12.1 log units. The rocks of the Nisyros volcano record no significant change in oxygen fugacity relative to buffer curves immediately prior, during and after the caldera-forming event. This is surprising given the considerable potential for interaction between the magmas and atmospheric oxygen during caldera collapse and the concomitant massive exsolution of volatiles. However, the Nisyros fugacity data may not be atypical of stratovolcanoes with products of similar composition and histories of caldera-forming events. We speculate that only in the volcanoes where caldera collapse coincides with magma-meteoric water interaction do the climactic or early postcaldera units show anomalously high oxygen fugacities.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="1991">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/E6924DA972830B158A2F4E1E821D3D74519997E5/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType"></istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>VOLGEO</jid>
<aid>9190085E</aid>
<ce:pii>0377-0273(91)90085-E</ce:pii>
<ce:doi>10.1016/0377-0273(91)90085-E</ce:doi>
<ce:copyright type="unknown" year="1991"></ce:copyright>
</item-info>
<head>
<ce:dochead>
<ce:textfn>Research paper</ce:textfn>
</ce:dochead>
<ce:title>Monitoring oxygen fugacity conditions in pre-, syn- and postcaldera magma chamber of Nisyros volcano, Aegean island arc, Greece</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Karen St.</ce:given-name>
<ce:surname>Seymour</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>AndréE.</ce:given-name>
<ce:surname>Lalonde</ce:surname>
<ce:cross-ref refid="AFF2">
<ce:sup>b</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:affiliation id="AFF1">
<ce:label>a</ce:label>
<ce:textfn>Department of Geology, Concordia University, Montreal, Que. H4B 1R6, Canada</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF2">
<ce:label>b</ce:label>
<ce:textfn>Ottawa-Carleton Geoscience Centre, Department of Geology, University of Ottawa, Ottawa, Ont. K1N 6N5, Canada</ce:textfn>
</ce:affiliation>
</ce:author-group>
<ce:date-received day="8" month="5" year="1990"></ce:date-received>
<ce:date-accepted day="1" month="10" year="1990"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>The magmatic oxygen fugacities of the pre-, syn-, and postcaldera products of the Quaternary volcano of Nisyros in the Aegean Volcanic Arc, eastern Mediterranean Sea, have been measured from analyzed compositions of titaniferous magnetite-ilmenite equilibrium pairs. Quench temperatures in the precaldera rhyodacitic flows range from 877 to 836°C and oxygen fugacities from −11.4 to −11.8 log units. One sample of the climactic pumice displays average quench temperatures of 853°C with
<ce:italic>f</ce:italic>
<ce:inf>O
<ce:inf>2</ce:inf>
</ce:inf>
of −11.7 log units. Crystallization temperatures of the dacitic domes that intercept the Nisyros caldera range from 843 to 804°C while oxygen fugacities range from −11.4 to −12.1 log units. The rocks of the Nisyros volcano record no significant change in oxygen fugacity relative to buffer curves immediately prior, during and after the caldera-forming event. This is surprising given the considerable potential for interaction between the magmas and atmospheric oxygen during caldera collapse and the concomitant massive exsolution of volatiles. However, the Nisyros fugacity data may not be atypical of stratovolcanoes with products of similar composition and histories of caldera-forming events. We speculate that only in the volcanoes where caldera collapse coincides with magma-meteoric water interaction do the climactic or early postcaldera units show anomalously high oxygen fugacities.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Monitoring oxygen fugacity conditions in pre-, syn- and postcaldera magma chamber of Nisyros volcano, Aegean island arc, Greece</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Monitoring oxygen fugacity conditions in pre-, syn- and postcaldera magma chamber of Nisyros volcano, Aegean island arc, Greece</title>
</titleInfo>
<name type="personal">
<namePart type="given">Karen St.</namePart>
<namePart type="family">Seymour</namePart>
<affiliation>Department of Geology, Concordia University, Montreal, Que. H4B 1R6, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">AndréE.</namePart>
<namePart type="family">Lalonde</namePart>
<affiliation>Ottawa-Carleton Geoscience Centre, Department of Geology, University of Ottawa, Ottawa, Ont. K1N 6N5, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1991</dateIssued>
<copyrightDate encoding="w3cdtf">1991</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: The magmatic oxygen fugacities of the pre-, syn-, and postcaldera products of the Quaternary volcano of Nisyros in the Aegean Volcanic Arc, eastern Mediterranean Sea, have been measured from analyzed compositions of titaniferous magnetite-ilmenite equilibrium pairs. Quench temperatures in the precaldera rhyodacitic flows range from 877 to 836°C and oxygen fugacities from −11.4 to −11.8 log units. One sample of the climactic pumice displays average quench temperatures of 853°C with fO2 of −11.7 log units. Crystallization temperatures of the dacitic domes that intercept the Nisyros caldera range from 843 to 804°C while oxygen fugacities range from −11.4 to −12.1 log units. The rocks of the Nisyros volcano record no significant change in oxygen fugacity relative to buffer curves immediately prior, during and after the caldera-forming event. This is surprising given the considerable potential for interaction between the magmas and atmospheric oxygen during caldera collapse and the concomitant massive exsolution of volatiles. However, the Nisyros fugacity data may not be atypical of stratovolcanoes with products of similar composition and histories of caldera-forming events. We speculate that only in the volcanoes where caldera collapse coincides with magma-meteoric water interaction do the climactic or early postcaldera units show anomalously high oxygen fugacities.</abstract>
<note type="content">Section title: Research paper</note>
<relatedItem type="host">
<titleInfo>
<title>Journal of Volcanology and Geothermal Research</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>VOLGEO</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">199106</dateIssued>
</originInfo>
<identifier type="ISSN">0377-0273</identifier>
<identifier type="PII">S0377-0273(00)X0132-1</identifier>
<part>
<date>199106</date>
<detail type="volume">
<number>46</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>3–4</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>187</start>
<end>336</end>
</extent>
<extent unit="pages">
<start>231</start>
<end>240</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">E6924DA972830B158A2F4E1E821D3D74519997E5</identifier>
<identifier type="ark">ark:/67375/6H6-P5TB05G4-M</identifier>
<identifier type="DOI">10.1016/0377-0273(91)90085-E</identifier>
<identifier type="PII">0377-0273(91)90085-E</identifier>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/E6924DA972830B158A2F4E1E821D3D74519997E5/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/NissirosV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000016 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000016 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    NissirosV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:E6924DA972830B158A2F4E1E821D3D74519997E5
   |texte=   Monitoring oxygen fugacity conditions in pre-, syn- and postcaldera magma chamber of Nisyros volcano, Aegean island arc, Greece
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Jan 16 00:18:27 2018. Site generation: Mon Feb 1 22:09:13 2021