Serveur d'exploration sur le nickel au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural, solid-gas and electrochemical characterization of Mg2Ni-rich and MgxNi100-x amorphous-rich nanomaterials obtained by mechanical alloying

Identifieur interne : 000153 ( PascalFrancis/Curation ); précédent : 000152; suivant : 000154

Structural, solid-gas and electrochemical characterization of Mg2Ni-rich and MgxNi100-x amorphous-rich nanomaterials obtained by mechanical alloying

Auteurs : M. Abdellaoui [Tunisie] ; S. Mokbli [Tunisie] ; F. Cuevas [France] ; M. Latroche [France] ; A. Percheron Guegan [France] ; H. Zarrouk [Tunisie]

Source :

RBID : Pascal:06-0233034

Descripteurs français

English descriptors

Abstract

Using a planetary ball mill and starting from a mixture of Mg and Ni with an atomic ration of 2:1, we successfully elaborated a nanocomposite material formed by the Mg2Ni phase in high proportion, some residual Ni and an amorphous phase. The synthesis of this composite proceeded at milling intensities 7 and 10, corresponding to 3.5 and 10 W/g shock power, respectively, after 18 and 4h. The best hydrogen absorption capacity reported, 3.75 H mol-1 (3.53 wt%) is for the composite synthesized for 24 h at 3.5 W/g shock power. Using the same planetary ball mill and starting from a mixture of Mg2Ni and Ni with a Mg atomic content ranging from 40 to 60at%, we elaborated amorphous phase alloys with little quantities of residual Ni. The synthesis of the amorphous phase proceeded at 6.49 W/g shock power, for milling durations ranging from 8 to 101 h for Mg40Ni60 and Mg60Ni40 samples, respectively. The best electrochemical capacity (470mAh/g) was obtained for the Mg50Ni50 sample obtained at milling duration 10 times shorter than that reported in the literature.
pA  
A01 01  1    @0 0360-3199
A02 01      @0 IJHEDX
A03   1    @0 Int. j. hydrogen energy
A05       @2 31
A06       @2 2
A08 01  1  ENG  @1 Structural, solid-gas and electrochemical characterization of Mg2Ni-rich and MgxNi100-x amorphous-rich nanomaterials obtained by mechanical alloying
A09 01  1  ENG  @1 HTM 2004 Hydrogen treatment of materials
A11 01  1    @1 ABDELLAOUI (M.)
A11 02  1    @1 MOKBLI (S.)
A11 03  1    @1 CUEVAS (F.)
A11 04  1    @1 LATROCHE (M.)
A11 05  1    @1 PERCHERON GUEGAN (A.)
A11 06  1    @1 ZARROUK (H.)
A12 01  1    @1 GOLTSOV (V. A.) @9 ed.
A14 01      @1 INRAP, Pôle technologique de Sidi Thabet 2020 @2 Sidi Thabet @3 TUN @Z 1 aut. @Z 2 aut. @Z 6 aut.
A14 02      @1 LCMTR, CNRS, 2-8, rue Henri Dunant @2 94320 Thiais @3 FRA @Z 3 aut. @Z 4 aut. @Z 5 aut.
A20       @1 247-250
A21       @1 2006
A23 01      @0 ENG
A43 01      @1 INIST @2 17522 @5 354000132990040140
A44       @0 0000 @1 © 2006 INIST-CNRS. All rights reserved.
A45       @0 7 ref.
A47 01  1    @0 06-0233034
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 International journal of hydrogen energy
A66 01      @0 GBR
C01 01    ENG  @0 Using a planetary ball mill and starting from a mixture of Mg and Ni with an atomic ration of 2:1, we successfully elaborated a nanocomposite material formed by the Mg2Ni phase in high proportion, some residual Ni and an amorphous phase. The synthesis of this composite proceeded at milling intensities 7 and 10, corresponding to 3.5 and 10 W/g shock power, respectively, after 18 and 4h. The best hydrogen absorption capacity reported, 3.75 H mol-1 (3.53 wt%) is for the composite synthesized for 24 h at 3.5 W/g shock power. Using the same planetary ball mill and starting from a mixture of Mg2Ni and Ni with a Mg atomic content ranging from 40 to 60at%, we elaborated amorphous phase alloys with little quantities of residual Ni. The synthesis of the amorphous phase proceeded at 6.49 W/g shock power, for milling durations ranging from 8 to 101 h for Mg40Ni60 and Mg60Ni40 samples, respectively. The best electrochemical capacity (470mAh/g) was obtained for the Mg50Ni50 sample obtained at milling duration 10 times shorter than that reported in the literature.
C02 01  X    @0 001D05I03E
C03 01  X  FRE  @0 Accumulateur électrochimique @5 05
C03 01  X  ENG  @0 Secondary cell @5 05
C03 01  X  SPA  @0 Acumulador electroquímico @5 05
C03 02  X  FRE  @0 Alliage mécanique @5 06
C03 02  X  ENG  @0 Mechanical alloying @5 06
C03 02  X  SPA  @0 Aleación mecánico @5 06
C03 03  X  FRE  @0 Broyeur satellite @5 07
C03 03  X  ENG  @0 Planetary mill @5 07
C03 03  X  SPA  @0 Molino rodillos satelite @5 07
C03 04  X  FRE  @0 Broyeur boulet @5 08
C03 04  X  ENG  @0 Ball mill @5 08
C03 04  X  SPA  @0 Molino bolas @5 08
C03 05  X  FRE  @0 Magnésium Nickel Alliage @2 NC @2 FR @2 FX @2 NA @5 09
C03 05  X  ENG  @0 Magnesium Nickel Alloys @2 NC @2 FR @2 FX @2 NA @5 09
C03 05  X  SPA  @0 Magnesio Niquel Aleación @2 NC @2 FR @2 FX @2 NA @5 09
C03 06  X  FRE  @0 Nanocomposite @5 10
C03 06  X  ENG  @0 Nanocomposite @5 10
C03 06  X  SPA  @0 Nanocompuesto @5 10
C03 07  3  FRE  @0 Nanomatériau @5 11
C03 07  3  ENG  @0 Nanostructured materials @5 11
C03 08  X  FRE  @0 Hydrogène @2 NC @5 12
C03 08  X  ENG  @0 Hydrogen @2 NC @5 12
C03 08  X  SPA  @0 Hidrógeno @2 NC @5 12
C03 09  X  FRE  @0 Alliage amorphe @5 13
C03 09  X  ENG  @0 Amorphous alloy @5 13
C03 09  X  SPA  @0 Aleación amorfa @5 13
C03 10  X  FRE  @0 Caractéristique électrochimique @5 14
C03 10  X  ENG  @0 Electrochemical characteristic @5 14
C03 10  X  SPA  @0 Característica electroquímica @5 14
N21       @1 149
pR  
A30 01  1  ENG  @1 Hydrogen Treatment of Materials International Conference @2 4 @3 Donetsk UKR @4 2004-05-17

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:06-0233034

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Structural, solid-gas and electrochemical characterization of Mg
<sub>2</sub>
Ni-rich and Mg
<sub>x</sub>
Ni
<sub>100-x</sub>
amorphous-rich nanomaterials obtained by mechanical alloying</title>
<author>
<name sortKey="Abdellaoui, M" sort="Abdellaoui, M" uniqKey="Abdellaoui M" first="M." last="Abdellaoui">M. Abdellaoui</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>INRAP, Pôle technologique de Sidi Thabet 2020</s1>
<s2>Sidi Thabet</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
</affiliation>
</author>
<author>
<name sortKey="Mokbli, S" sort="Mokbli, S" uniqKey="Mokbli S" first="S." last="Mokbli">S. Mokbli</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>INRAP, Pôle technologique de Sidi Thabet 2020</s1>
<s2>Sidi Thabet</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
</affiliation>
</author>
<author>
<name sortKey="Cuevas, F" sort="Cuevas, F" uniqKey="Cuevas F" first="F." last="Cuevas">F. Cuevas</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>LCMTR, CNRS, 2-8, rue Henri Dunant</s1>
<s2>94320 Thiais</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Latroche, M" sort="Latroche, M" uniqKey="Latroche M" first="M." last="Latroche">M. Latroche</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>LCMTR, CNRS, 2-8, rue Henri Dunant</s1>
<s2>94320 Thiais</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Percheron Guegan, A" sort="Percheron Guegan, A" uniqKey="Percheron Guegan A" first="A." last="Percheron Guegan">A. Percheron Guegan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>LCMTR, CNRS, 2-8, rue Henri Dunant</s1>
<s2>94320 Thiais</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Zarrouk, H" sort="Zarrouk, H" uniqKey="Zarrouk H" first="H." last="Zarrouk">H. Zarrouk</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>INRAP, Pôle technologique de Sidi Thabet 2020</s1>
<s2>Sidi Thabet</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">06-0233034</idno>
<date when="2006">2006</date>
<idno type="stanalyst">PASCAL 06-0233034 INIST</idno>
<idno type="RBID">Pascal:06-0233034</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000288</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000153</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Structural, solid-gas and electrochemical characterization of Mg
<sub>2</sub>
Ni-rich and Mg
<sub>x</sub>
Ni
<sub>100-x</sub>
amorphous-rich nanomaterials obtained by mechanical alloying</title>
<author>
<name sortKey="Abdellaoui, M" sort="Abdellaoui, M" uniqKey="Abdellaoui M" first="M." last="Abdellaoui">M. Abdellaoui</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>INRAP, Pôle technologique de Sidi Thabet 2020</s1>
<s2>Sidi Thabet</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
</affiliation>
</author>
<author>
<name sortKey="Mokbli, S" sort="Mokbli, S" uniqKey="Mokbli S" first="S." last="Mokbli">S. Mokbli</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>INRAP, Pôle technologique de Sidi Thabet 2020</s1>
<s2>Sidi Thabet</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
</affiliation>
</author>
<author>
<name sortKey="Cuevas, F" sort="Cuevas, F" uniqKey="Cuevas F" first="F." last="Cuevas">F. Cuevas</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>LCMTR, CNRS, 2-8, rue Henri Dunant</s1>
<s2>94320 Thiais</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Latroche, M" sort="Latroche, M" uniqKey="Latroche M" first="M." last="Latroche">M. Latroche</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>LCMTR, CNRS, 2-8, rue Henri Dunant</s1>
<s2>94320 Thiais</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Percheron Guegan, A" sort="Percheron Guegan, A" uniqKey="Percheron Guegan A" first="A." last="Percheron Guegan">A. Percheron Guegan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>LCMTR, CNRS, 2-8, rue Henri Dunant</s1>
<s2>94320 Thiais</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Zarrouk, H" sort="Zarrouk, H" uniqKey="Zarrouk H" first="H." last="Zarrouk">H. Zarrouk</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>INRAP, Pôle technologique de Sidi Thabet 2020</s1>
<s2>Sidi Thabet</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">International journal of hydrogen energy</title>
<title level="j" type="abbreviated">Int. j. hydrogen energy</title>
<idno type="ISSN">0360-3199</idno>
<imprint>
<date when="2006">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">International journal of hydrogen energy</title>
<title level="j" type="abbreviated">Int. j. hydrogen energy</title>
<idno type="ISSN">0360-3199</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amorphous alloy</term>
<term>Ball mill</term>
<term>Electrochemical characteristic</term>
<term>Hydrogen</term>
<term>Magnesium Nickel Alloys</term>
<term>Mechanical alloying</term>
<term>Nanocomposite</term>
<term>Nanostructured materials</term>
<term>Planetary mill</term>
<term>Secondary cell</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Accumulateur électrochimique</term>
<term>Alliage mécanique</term>
<term>Broyeur satellite</term>
<term>Broyeur boulet</term>
<term>Magnésium Nickel Alliage</term>
<term>Nanocomposite</term>
<term>Nanomatériau</term>
<term>Hydrogène</term>
<term>Alliage amorphe</term>
<term>Caractéristique électrochimique</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Hydrogène</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Using a planetary ball mill and starting from a mixture of Mg and Ni with an atomic ration of 2:1, we successfully elaborated a nanocomposite material formed by the Mg
<sub>2</sub>
Ni phase in high proportion, some residual Ni and an amorphous phase. The synthesis of this composite proceeded at milling intensities 7 and 10, corresponding to 3.5 and 10 W/g shock power, respectively, after 18 and 4h. The best hydrogen absorption capacity reported, 3.75 H mol
<sup>-1</sup>
(3.53 wt%) is for the composite synthesized for 24 h at 3.5 W/g shock power. Using the same planetary ball mill and starting from a mixture of Mg
<sub>2</sub>
Ni and Ni with a Mg atomic content ranging from 40 to 60at%, we elaborated amorphous phase alloys with little quantities of residual Ni. The synthesis of the amorphous phase proceeded at 6.49 W/g shock power, for milling durations ranging from 8 to 101 h for Mg
<sub>40</sub>
Ni
<sub>60</sub>
and Mg
<sub>60</sub>
Ni
<sub>40</sub>
samples, respectively. The best electrochemical capacity (470mAh/g) was obtained for the Mg
<sub>50</sub>
Ni
<sub>50</sub>
sample obtained at milling duration 10 times shorter than that reported in the literature.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0360-3199</s0>
</fA01>
<fA02 i1="01">
<s0>IJHEDX</s0>
</fA02>
<fA03 i2="1">
<s0>Int. j. hydrogen energy</s0>
</fA03>
<fA05>
<s2>31</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Structural, solid-gas and electrochemical characterization of Mg
<sub>2</sub>
Ni-rich and Mg
<sub>x</sub>
Ni
<sub>100-x</sub>
amorphous-rich nanomaterials obtained by mechanical alloying</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>HTM 2004 Hydrogen treatment of materials</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>ABDELLAOUI (M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MOKBLI (S.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>CUEVAS (F.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>LATROCHE (M.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>PERCHERON GUEGAN (A.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>ZARROUK (H.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>GOLTSOV (V. A.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>INRAP, Pôle technologique de Sidi Thabet 2020</s1>
<s2>Sidi Thabet</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>LCMTR, CNRS, 2-8, rue Henri Dunant</s1>
<s2>94320 Thiais</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>247-250</s1>
</fA20>
<fA21>
<s1>2006</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>17522</s2>
<s5>354000132990040140</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2006 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>7 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>06-0233034</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>International journal of hydrogen energy</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Using a planetary ball mill and starting from a mixture of Mg and Ni with an atomic ration of 2:1, we successfully elaborated a nanocomposite material formed by the Mg
<sub>2</sub>
Ni phase in high proportion, some residual Ni and an amorphous phase. The synthesis of this composite proceeded at milling intensities 7 and 10, corresponding to 3.5 and 10 W/g shock power, respectively, after 18 and 4h. The best hydrogen absorption capacity reported, 3.75 H mol
<sup>-1</sup>
(3.53 wt%) is for the composite synthesized for 24 h at 3.5 W/g shock power. Using the same planetary ball mill and starting from a mixture of Mg
<sub>2</sub>
Ni and Ni with a Mg atomic content ranging from 40 to 60at%, we elaborated amorphous phase alloys with little quantities of residual Ni. The synthesis of the amorphous phase proceeded at 6.49 W/g shock power, for milling durations ranging from 8 to 101 h for Mg
<sub>40</sub>
Ni
<sub>60</sub>
and Mg
<sub>60</sub>
Ni
<sub>40</sub>
samples, respectively. The best electrochemical capacity (470mAh/g) was obtained for the Mg
<sub>50</sub>
Ni
<sub>50</sub>
sample obtained at milling duration 10 times shorter than that reported in the literature.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D05I03E</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Accumulateur électrochimique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Secondary cell</s0>
<s5>05</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Acumulador electroquímico</s0>
<s5>05</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Alliage mécanique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Mechanical alloying</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Aleación mecánico</s0>
<s5>06</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Broyeur satellite</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Planetary mill</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Molino rodillos satelite</s0>
<s5>07</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Broyeur boulet</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Ball mill</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Molino bolas</s0>
<s5>08</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Magnésium Nickel Alliage</s0>
<s2>NC</s2>
<s2>FR</s2>
<s2>FX</s2>
<s2>NA</s2>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Magnesium Nickel Alloys</s0>
<s2>NC</s2>
<s2>FR</s2>
<s2>FX</s2>
<s2>NA</s2>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Magnesio Niquel Aleación</s0>
<s2>NC</s2>
<s2>FR</s2>
<s2>FX</s2>
<s2>NA</s2>
<s5>09</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Nanocomposite</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Nanocomposite</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Nanocompuesto</s0>
<s5>10</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Hydrogène</s0>
<s2>NC</s2>
<s5>12</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Hydrogen</s0>
<s2>NC</s2>
<s5>12</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Hidrógeno</s0>
<s2>NC</s2>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Alliage amorphe</s0>
<s5>13</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Amorphous alloy</s0>
<s5>13</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Aleación amorfa</s0>
<s5>13</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Caractéristique électrochimique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Electrochemical characteristic</s0>
<s5>14</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Característica electroquímica</s0>
<s5>14</s5>
</fC03>
<fN21>
<s1>149</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Hydrogen Treatment of Materials International Conference</s1>
<s2>4</s2>
<s3>Donetsk UKR</s3>
<s4>2004-05-17</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/NickelMaghrebV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000153 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000153 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    NickelMaghrebV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:06-0233034
   |texte=   Structural, solid-gas and electrochemical characterization of Mg2Ni-rich and MgxNi100-x amorphous-rich nanomaterials obtained by mechanical alloying
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Fri Mar 24 23:14:20 2017. Site generation: Tue Mar 5 17:03:47 2024