Serveur d'exploration sur le nickel au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural, solid-gas and electrochemical characterization of Mg2Ni-rich and MgxNi100-x amorphous-rich nanomaterials obtained by mechanical alloying

Identifieur interne : 000288 ( PascalFrancis/Corpus ); précédent : 000287; suivant : 000289

Structural, solid-gas and electrochemical characterization of Mg2Ni-rich and MgxNi100-x amorphous-rich nanomaterials obtained by mechanical alloying

Auteurs : M. Abdellaoui ; S. Mokbli ; F. Cuevas ; M. Latroche ; A. Percheron Guegan ; H. Zarrouk

Source :

RBID : Pascal:06-0233034

Descripteurs français

English descriptors

Abstract

Using a planetary ball mill and starting from a mixture of Mg and Ni with an atomic ration of 2:1, we successfully elaborated a nanocomposite material formed by the Mg2Ni phase in high proportion, some residual Ni and an amorphous phase. The synthesis of this composite proceeded at milling intensities 7 and 10, corresponding to 3.5 and 10 W/g shock power, respectively, after 18 and 4h. The best hydrogen absorption capacity reported, 3.75 H mol-1 (3.53 wt%) is for the composite synthesized for 24 h at 3.5 W/g shock power. Using the same planetary ball mill and starting from a mixture of Mg2Ni and Ni with a Mg atomic content ranging from 40 to 60at%, we elaborated amorphous phase alloys with little quantities of residual Ni. The synthesis of the amorphous phase proceeded at 6.49 W/g shock power, for milling durations ranging from 8 to 101 h for Mg40Ni60 and Mg60Ni40 samples, respectively. The best electrochemical capacity (470mAh/g) was obtained for the Mg50Ni50 sample obtained at milling duration 10 times shorter than that reported in the literature.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0360-3199
A02 01      @0 IJHEDX
A03   1    @0 Int. j. hydrogen energy
A05       @2 31
A06       @2 2
A08 01  1  ENG  @1 Structural, solid-gas and electrochemical characterization of Mg2Ni-rich and MgxNi100-x amorphous-rich nanomaterials obtained by mechanical alloying
A09 01  1  ENG  @1 HTM 2004 Hydrogen treatment of materials
A11 01  1    @1 ABDELLAOUI (M.)
A11 02  1    @1 MOKBLI (S.)
A11 03  1    @1 CUEVAS (F.)
A11 04  1    @1 LATROCHE (M.)
A11 05  1    @1 PERCHERON GUEGAN (A.)
A11 06  1    @1 ZARROUK (H.)
A12 01  1    @1 GOLTSOV (V. A.) @9 ed.
A14 01      @1 INRAP, Pôle technologique de Sidi Thabet 2020 @2 Sidi Thabet @3 TUN @Z 1 aut. @Z 2 aut. @Z 6 aut.
A14 02      @1 LCMTR, CNRS, 2-8, rue Henri Dunant @2 94320 Thiais @3 FRA @Z 3 aut. @Z 4 aut. @Z 5 aut.
A20       @1 247-250
A21       @1 2006
A23 01      @0 ENG
A43 01      @1 INIST @2 17522 @5 354000132990040140
A44       @0 0000 @1 © 2006 INIST-CNRS. All rights reserved.
A45       @0 7 ref.
A47 01  1    @0 06-0233034
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 International journal of hydrogen energy
A66 01      @0 GBR
C01 01    ENG  @0 Using a planetary ball mill and starting from a mixture of Mg and Ni with an atomic ration of 2:1, we successfully elaborated a nanocomposite material formed by the Mg2Ni phase in high proportion, some residual Ni and an amorphous phase. The synthesis of this composite proceeded at milling intensities 7 and 10, corresponding to 3.5 and 10 W/g shock power, respectively, after 18 and 4h. The best hydrogen absorption capacity reported, 3.75 H mol-1 (3.53 wt%) is for the composite synthesized for 24 h at 3.5 W/g shock power. Using the same planetary ball mill and starting from a mixture of Mg2Ni and Ni with a Mg atomic content ranging from 40 to 60at%, we elaborated amorphous phase alloys with little quantities of residual Ni. The synthesis of the amorphous phase proceeded at 6.49 W/g shock power, for milling durations ranging from 8 to 101 h for Mg40Ni60 and Mg60Ni40 samples, respectively. The best electrochemical capacity (470mAh/g) was obtained for the Mg50Ni50 sample obtained at milling duration 10 times shorter than that reported in the literature.
C02 01  X    @0 001D05I03E
C03 01  X  FRE  @0 Accumulateur électrochimique @5 05
C03 01  X  ENG  @0 Secondary cell @5 05
C03 01  X  SPA  @0 Acumulador electroquímico @5 05
C03 02  X  FRE  @0 Alliage mécanique @5 06
C03 02  X  ENG  @0 Mechanical alloying @5 06
C03 02  X  SPA  @0 Aleación mecánico @5 06
C03 03  X  FRE  @0 Broyeur satellite @5 07
C03 03  X  ENG  @0 Planetary mill @5 07
C03 03  X  SPA  @0 Molino rodillos satelite @5 07
C03 04  X  FRE  @0 Broyeur boulet @5 08
C03 04  X  ENG  @0 Ball mill @5 08
C03 04  X  SPA  @0 Molino bolas @5 08
C03 05  X  FRE  @0 Magnésium Nickel Alliage @2 NC @2 FR @2 FX @2 NA @5 09
C03 05  X  ENG  @0 Magnesium Nickel Alloys @2 NC @2 FR @2 FX @2 NA @5 09
C03 05  X  SPA  @0 Magnesio Niquel Aleación @2 NC @2 FR @2 FX @2 NA @5 09
C03 06  X  FRE  @0 Nanocomposite @5 10
C03 06  X  ENG  @0 Nanocomposite @5 10
C03 06  X  SPA  @0 Nanocompuesto @5 10
C03 07  3  FRE  @0 Nanomatériau @5 11
C03 07  3  ENG  @0 Nanostructured materials @5 11
C03 08  X  FRE  @0 Hydrogène @2 NC @5 12
C03 08  X  ENG  @0 Hydrogen @2 NC @5 12
C03 08  X  SPA  @0 Hidrógeno @2 NC @5 12
C03 09  X  FRE  @0 Alliage amorphe @5 13
C03 09  X  ENG  @0 Amorphous alloy @5 13
C03 09  X  SPA  @0 Aleación amorfa @5 13
C03 10  X  FRE  @0 Caractéristique électrochimique @5 14
C03 10  X  ENG  @0 Electrochemical characteristic @5 14
C03 10  X  SPA  @0 Característica electroquímica @5 14
N21       @1 149
pR  
A30 01  1  ENG  @1 Hydrogen Treatment of Materials International Conference @2 4 @3 Donetsk UKR @4 2004-05-17

Format Inist (serveur)

NO : PASCAL 06-0233034 INIST
ET : Structural, solid-gas and electrochemical characterization of Mg2Ni-rich and MgxNi100-x amorphous-rich nanomaterials obtained by mechanical alloying
AU : ABDELLAOUI (M.); MOKBLI (S.); CUEVAS (F.); LATROCHE (M.); PERCHERON GUEGAN (A.); ZARROUK (H.); GOLTSOV (V. A.)
AF : INRAP, Pôle technologique de Sidi Thabet 2020/Sidi Thabet/Tunisie (1 aut., 2 aut., 6 aut.); LCMTR, CNRS, 2-8, rue Henri Dunant/94320 Thiais/France (3 aut., 4 aut., 5 aut.)
DT : Publication en série; Congrès; Niveau analytique
SO : International journal of hydrogen energy; ISSN 0360-3199; Coden IJHEDX; Royaume-Uni; Da. 2006; Vol. 31; No. 2; Pp. 247-250; Bibl. 7 ref.
LA : Anglais
EA : Using a planetary ball mill and starting from a mixture of Mg and Ni with an atomic ration of 2:1, we successfully elaborated a nanocomposite material formed by the Mg2Ni phase in high proportion, some residual Ni and an amorphous phase. The synthesis of this composite proceeded at milling intensities 7 and 10, corresponding to 3.5 and 10 W/g shock power, respectively, after 18 and 4h. The best hydrogen absorption capacity reported, 3.75 H mol-1 (3.53 wt%) is for the composite synthesized for 24 h at 3.5 W/g shock power. Using the same planetary ball mill and starting from a mixture of Mg2Ni and Ni with a Mg atomic content ranging from 40 to 60at%, we elaborated amorphous phase alloys with little quantities of residual Ni. The synthesis of the amorphous phase proceeded at 6.49 W/g shock power, for milling durations ranging from 8 to 101 h for Mg40Ni60 and Mg60Ni40 samples, respectively. The best electrochemical capacity (470mAh/g) was obtained for the Mg50Ni50 sample obtained at milling duration 10 times shorter than that reported in the literature.
CC : 001D05I03E
FD : Accumulateur électrochimique; Alliage mécanique; Broyeur satellite; Broyeur boulet; Magnésium Nickel Alliage; Nanocomposite; Nanomatériau; Hydrogène; Alliage amorphe; Caractéristique électrochimique
ED : Secondary cell; Mechanical alloying; Planetary mill; Ball mill; Magnesium Nickel Alloys; Nanocomposite; Nanostructured materials; Hydrogen; Amorphous alloy; Electrochemical characteristic
SD : Acumulador electroquímico; Aleación mecánico; Molino rodillos satelite; Molino bolas; Magnesio Niquel Aleación; Nanocompuesto; Hidrógeno; Aleación amorfa; Característica electroquímica
LO : INIST-17522.354000132990040140
ID : 06-0233034

Links to Exploration step

Pascal:06-0233034

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Structural, solid-gas and electrochemical characterization of Mg
<sub>2</sub>
Ni-rich and Mg
<sub>x</sub>
Ni
<sub>100-x</sub>
amorphous-rich nanomaterials obtained by mechanical alloying</title>
<author>
<name sortKey="Abdellaoui, M" sort="Abdellaoui, M" uniqKey="Abdellaoui M" first="M." last="Abdellaoui">M. Abdellaoui</name>
<affiliation>
<inist:fA14 i1="01">
<s1>INRAP, Pôle technologique de Sidi Thabet 2020</s1>
<s2>Sidi Thabet</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mokbli, S" sort="Mokbli, S" uniqKey="Mokbli S" first="S." last="Mokbli">S. Mokbli</name>
<affiliation>
<inist:fA14 i1="01">
<s1>INRAP, Pôle technologique de Sidi Thabet 2020</s1>
<s2>Sidi Thabet</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Cuevas, F" sort="Cuevas, F" uniqKey="Cuevas F" first="F." last="Cuevas">F. Cuevas</name>
<affiliation>
<inist:fA14 i1="02">
<s1>LCMTR, CNRS, 2-8, rue Henri Dunant</s1>
<s2>94320 Thiais</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Latroche, M" sort="Latroche, M" uniqKey="Latroche M" first="M." last="Latroche">M. Latroche</name>
<affiliation>
<inist:fA14 i1="02">
<s1>LCMTR, CNRS, 2-8, rue Henri Dunant</s1>
<s2>94320 Thiais</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Percheron Guegan, A" sort="Percheron Guegan, A" uniqKey="Percheron Guegan A" first="A." last="Percheron Guegan">A. Percheron Guegan</name>
<affiliation>
<inist:fA14 i1="02">
<s1>LCMTR, CNRS, 2-8, rue Henri Dunant</s1>
<s2>94320 Thiais</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Zarrouk, H" sort="Zarrouk, H" uniqKey="Zarrouk H" first="H." last="Zarrouk">H. Zarrouk</name>
<affiliation>
<inist:fA14 i1="01">
<s1>INRAP, Pôle technologique de Sidi Thabet 2020</s1>
<s2>Sidi Thabet</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">06-0233034</idno>
<date when="2006">2006</date>
<idno type="stanalyst">PASCAL 06-0233034 INIST</idno>
<idno type="RBID">Pascal:06-0233034</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000288</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Structural, solid-gas and electrochemical characterization of Mg
<sub>2</sub>
Ni-rich and Mg
<sub>x</sub>
Ni
<sub>100-x</sub>
amorphous-rich nanomaterials obtained by mechanical alloying</title>
<author>
<name sortKey="Abdellaoui, M" sort="Abdellaoui, M" uniqKey="Abdellaoui M" first="M." last="Abdellaoui">M. Abdellaoui</name>
<affiliation>
<inist:fA14 i1="01">
<s1>INRAP, Pôle technologique de Sidi Thabet 2020</s1>
<s2>Sidi Thabet</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mokbli, S" sort="Mokbli, S" uniqKey="Mokbli S" first="S." last="Mokbli">S. Mokbli</name>
<affiliation>
<inist:fA14 i1="01">
<s1>INRAP, Pôle technologique de Sidi Thabet 2020</s1>
<s2>Sidi Thabet</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Cuevas, F" sort="Cuevas, F" uniqKey="Cuevas F" first="F." last="Cuevas">F. Cuevas</name>
<affiliation>
<inist:fA14 i1="02">
<s1>LCMTR, CNRS, 2-8, rue Henri Dunant</s1>
<s2>94320 Thiais</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Latroche, M" sort="Latroche, M" uniqKey="Latroche M" first="M." last="Latroche">M. Latroche</name>
<affiliation>
<inist:fA14 i1="02">
<s1>LCMTR, CNRS, 2-8, rue Henri Dunant</s1>
<s2>94320 Thiais</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Percheron Guegan, A" sort="Percheron Guegan, A" uniqKey="Percheron Guegan A" first="A." last="Percheron Guegan">A. Percheron Guegan</name>
<affiliation>
<inist:fA14 i1="02">
<s1>LCMTR, CNRS, 2-8, rue Henri Dunant</s1>
<s2>94320 Thiais</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Zarrouk, H" sort="Zarrouk, H" uniqKey="Zarrouk H" first="H." last="Zarrouk">H. Zarrouk</name>
<affiliation>
<inist:fA14 i1="01">
<s1>INRAP, Pôle technologique de Sidi Thabet 2020</s1>
<s2>Sidi Thabet</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">International journal of hydrogen energy</title>
<title level="j" type="abbreviated">Int. j. hydrogen energy</title>
<idno type="ISSN">0360-3199</idno>
<imprint>
<date when="2006">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">International journal of hydrogen energy</title>
<title level="j" type="abbreviated">Int. j. hydrogen energy</title>
<idno type="ISSN">0360-3199</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amorphous alloy</term>
<term>Ball mill</term>
<term>Electrochemical characteristic</term>
<term>Hydrogen</term>
<term>Magnesium Nickel Alloys</term>
<term>Mechanical alloying</term>
<term>Nanocomposite</term>
<term>Nanostructured materials</term>
<term>Planetary mill</term>
<term>Secondary cell</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Accumulateur électrochimique</term>
<term>Alliage mécanique</term>
<term>Broyeur satellite</term>
<term>Broyeur boulet</term>
<term>Magnésium Nickel Alliage</term>
<term>Nanocomposite</term>
<term>Nanomatériau</term>
<term>Hydrogène</term>
<term>Alliage amorphe</term>
<term>Caractéristique électrochimique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Using a planetary ball mill and starting from a mixture of Mg and Ni with an atomic ration of 2:1, we successfully elaborated a nanocomposite material formed by the Mg
<sub>2</sub>
Ni phase in high proportion, some residual Ni and an amorphous phase. The synthesis of this composite proceeded at milling intensities 7 and 10, corresponding to 3.5 and 10 W/g shock power, respectively, after 18 and 4h. The best hydrogen absorption capacity reported, 3.75 H mol
<sup>-1</sup>
(3.53 wt%) is for the composite synthesized for 24 h at 3.5 W/g shock power. Using the same planetary ball mill and starting from a mixture of Mg
<sub>2</sub>
Ni and Ni with a Mg atomic content ranging from 40 to 60at%, we elaborated amorphous phase alloys with little quantities of residual Ni. The synthesis of the amorphous phase proceeded at 6.49 W/g shock power, for milling durations ranging from 8 to 101 h for Mg
<sub>40</sub>
Ni
<sub>60</sub>
and Mg
<sub>60</sub>
Ni
<sub>40</sub>
samples, respectively. The best electrochemical capacity (470mAh/g) was obtained for the Mg
<sub>50</sub>
Ni
<sub>50</sub>
sample obtained at milling duration 10 times shorter than that reported in the literature.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0360-3199</s0>
</fA01>
<fA02 i1="01">
<s0>IJHEDX</s0>
</fA02>
<fA03 i2="1">
<s0>Int. j. hydrogen energy</s0>
</fA03>
<fA05>
<s2>31</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Structural, solid-gas and electrochemical characterization of Mg
<sub>2</sub>
Ni-rich and Mg
<sub>x</sub>
Ni
<sub>100-x</sub>
amorphous-rich nanomaterials obtained by mechanical alloying</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>HTM 2004 Hydrogen treatment of materials</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>ABDELLAOUI (M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MOKBLI (S.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>CUEVAS (F.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>LATROCHE (M.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>PERCHERON GUEGAN (A.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>ZARROUK (H.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>GOLTSOV (V. A.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>INRAP, Pôle technologique de Sidi Thabet 2020</s1>
<s2>Sidi Thabet</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>LCMTR, CNRS, 2-8, rue Henri Dunant</s1>
<s2>94320 Thiais</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>247-250</s1>
</fA20>
<fA21>
<s1>2006</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>17522</s2>
<s5>354000132990040140</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2006 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>7 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>06-0233034</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>International journal of hydrogen energy</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Using a planetary ball mill and starting from a mixture of Mg and Ni with an atomic ration of 2:1, we successfully elaborated a nanocomposite material formed by the Mg
<sub>2</sub>
Ni phase in high proportion, some residual Ni and an amorphous phase. The synthesis of this composite proceeded at milling intensities 7 and 10, corresponding to 3.5 and 10 W/g shock power, respectively, after 18 and 4h. The best hydrogen absorption capacity reported, 3.75 H mol
<sup>-1</sup>
(3.53 wt%) is for the composite synthesized for 24 h at 3.5 W/g shock power. Using the same planetary ball mill and starting from a mixture of Mg
<sub>2</sub>
Ni and Ni with a Mg atomic content ranging from 40 to 60at%, we elaborated amorphous phase alloys with little quantities of residual Ni. The synthesis of the amorphous phase proceeded at 6.49 W/g shock power, for milling durations ranging from 8 to 101 h for Mg
<sub>40</sub>
Ni
<sub>60</sub>
and Mg
<sub>60</sub>
Ni
<sub>40</sub>
samples, respectively. The best electrochemical capacity (470mAh/g) was obtained for the Mg
<sub>50</sub>
Ni
<sub>50</sub>
sample obtained at milling duration 10 times shorter than that reported in the literature.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D05I03E</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Accumulateur électrochimique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Secondary cell</s0>
<s5>05</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Acumulador electroquímico</s0>
<s5>05</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Alliage mécanique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Mechanical alloying</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Aleación mecánico</s0>
<s5>06</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Broyeur satellite</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Planetary mill</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Molino rodillos satelite</s0>
<s5>07</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Broyeur boulet</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Ball mill</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Molino bolas</s0>
<s5>08</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Magnésium Nickel Alliage</s0>
<s2>NC</s2>
<s2>FR</s2>
<s2>FX</s2>
<s2>NA</s2>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Magnesium Nickel Alloys</s0>
<s2>NC</s2>
<s2>FR</s2>
<s2>FX</s2>
<s2>NA</s2>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Magnesio Niquel Aleación</s0>
<s2>NC</s2>
<s2>FR</s2>
<s2>FX</s2>
<s2>NA</s2>
<s5>09</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Nanocomposite</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Nanocomposite</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Nanocompuesto</s0>
<s5>10</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Hydrogène</s0>
<s2>NC</s2>
<s5>12</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Hydrogen</s0>
<s2>NC</s2>
<s5>12</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Hidrógeno</s0>
<s2>NC</s2>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Alliage amorphe</s0>
<s5>13</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Amorphous alloy</s0>
<s5>13</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Aleación amorfa</s0>
<s5>13</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Caractéristique électrochimique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Electrochemical characteristic</s0>
<s5>14</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Característica electroquímica</s0>
<s5>14</s5>
</fC03>
<fN21>
<s1>149</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Hydrogen Treatment of Materials International Conference</s1>
<s2>4</s2>
<s3>Donetsk UKR</s3>
<s4>2004-05-17</s4>
</fA30>
</pR>
</standard>
<server>
<NO>PASCAL 06-0233034 INIST</NO>
<ET>Structural, solid-gas and electrochemical characterization of Mg
<sub>2</sub>
Ni-rich and Mg
<sub>x</sub>
Ni
<sub>100-x</sub>
amorphous-rich nanomaterials obtained by mechanical alloying</ET>
<AU>ABDELLAOUI (M.); MOKBLI (S.); CUEVAS (F.); LATROCHE (M.); PERCHERON GUEGAN (A.); ZARROUK (H.); GOLTSOV (V. A.)</AU>
<AF>INRAP, Pôle technologique de Sidi Thabet 2020/Sidi Thabet/Tunisie (1 aut., 2 aut., 6 aut.); LCMTR, CNRS, 2-8, rue Henri Dunant/94320 Thiais/France (3 aut., 4 aut., 5 aut.)</AF>
<DT>Publication en série; Congrès; Niveau analytique</DT>
<SO>International journal of hydrogen energy; ISSN 0360-3199; Coden IJHEDX; Royaume-Uni; Da. 2006; Vol. 31; No. 2; Pp. 247-250; Bibl. 7 ref.</SO>
<LA>Anglais</LA>
<EA>Using a planetary ball mill and starting from a mixture of Mg and Ni with an atomic ration of 2:1, we successfully elaborated a nanocomposite material formed by the Mg
<sub>2</sub>
Ni phase in high proportion, some residual Ni and an amorphous phase. The synthesis of this composite proceeded at milling intensities 7 and 10, corresponding to 3.5 and 10 W/g shock power, respectively, after 18 and 4h. The best hydrogen absorption capacity reported, 3.75 H mol
<sup>-1</sup>
(3.53 wt%) is for the composite synthesized for 24 h at 3.5 W/g shock power. Using the same planetary ball mill and starting from a mixture of Mg
<sub>2</sub>
Ni and Ni with a Mg atomic content ranging from 40 to 60at%, we elaborated amorphous phase alloys with little quantities of residual Ni. The synthesis of the amorphous phase proceeded at 6.49 W/g shock power, for milling durations ranging from 8 to 101 h for Mg
<sub>40</sub>
Ni
<sub>60</sub>
and Mg
<sub>60</sub>
Ni
<sub>40</sub>
samples, respectively. The best electrochemical capacity (470mAh/g) was obtained for the Mg
<sub>50</sub>
Ni
<sub>50</sub>
sample obtained at milling duration 10 times shorter than that reported in the literature.</EA>
<CC>001D05I03E</CC>
<FD>Accumulateur électrochimique; Alliage mécanique; Broyeur satellite; Broyeur boulet; Magnésium Nickel Alliage; Nanocomposite; Nanomatériau; Hydrogène; Alliage amorphe; Caractéristique électrochimique</FD>
<ED>Secondary cell; Mechanical alloying; Planetary mill; Ball mill; Magnesium Nickel Alloys; Nanocomposite; Nanostructured materials; Hydrogen; Amorphous alloy; Electrochemical characteristic</ED>
<SD>Acumulador electroquímico; Aleación mecánico; Molino rodillos satelite; Molino bolas; Magnesio Niquel Aleación; Nanocompuesto; Hidrógeno; Aleación amorfa; Característica electroquímica</SD>
<LO>INIST-17522.354000132990040140</LO>
<ID>06-0233034</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/NickelMaghrebV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000288 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000288 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    NickelMaghrebV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:06-0233034
   |texte=   Structural, solid-gas and electrochemical characterization of Mg2Ni-rich and MgxNi100-x amorphous-rich nanomaterials obtained by mechanical alloying
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Fri Mar 24 23:14:20 2017. Site generation: Tue Mar 5 17:03:47 2024