Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

One-pot noninjection route to CdS quantum dots via hydrothermal synthesis.

Identifieur interne : 000073 ( PubMed/Curation ); précédent : 000072; suivant : 000074

One-pot noninjection route to CdS quantum dots via hydrothermal synthesis.

Auteurs : Abdelhay Aboulaich [France] ; Denis Billaud ; Mouhammad Abyan ; Lavinia Balan ; Jean-Jacques Gaumet ; Ghouti Medjadhi ; Jaafar Ghanbaja ; Raphaël Schneider

Source :

RBID : pubmed:22509818

Abstract

Water-dispersible CdS quantum dots (QDs) emitting from 510 to 650 nm were synthesized in a simple one-pot noninjection hydrothermal route using cadmium chloride, thiourea, and 3-mercaptopropionic acid (MPA) as starting materials. All these chemicals were loaded at room temperature in a Teflon sealed tube and the reaction mixture heated at 100 °C. The effects of CdCl(2)/thiourea/MPA feed molar ratios, pH, and concentrations of precursors affecting the growth of the CdS QDs, was monitored via the temporal evolution of the optical properties of the CdS nanocrystals. High concentration of precursors and high MPA/Cd feed molar ratios were found to lead to an increase in the diameter of the resulting CdS nanocrystals and of the trap state emission of the dots. The combination of moderate pH value, low concentration of precursors and slow growth rate plays the crucial role in the good optical properties of the obtained CdS nanocrystals. The highest photoluminescence achieved for CdS@MPA QDs of average size 3.5 nm was 20%. As prepared colloids show rather narrow particle size distribution, although all reactants were mixed at room temperature. CdS@MPA QDs were characterized by UV-vis and photoluminescence spectroscopy, powder X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectrometry and MALDI TOF mass spectrometry. This noninjection one-pot approach features easy handling and large-scale production with excellent synthetic reproducibility. Surface passivation of CdS@MPA cores by a wider bandgap material, ZnS, led to enhanced luminescence intensity. CdS@MPA and CdS/ZnS@MPA QDs exhibit high photochemical stability and hold a good potential to be applied in optoelectronic devices and biological applications.

DOI: 10.1021/am300232z
PubMed: 22509818

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:22509818

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">One-pot noninjection route to CdS quantum dots via hydrothermal synthesis.</title>
<author>
<name sortKey="Aboulaich, Abdelhay" sort="Aboulaich, Abdelhay" uniqKey="Aboulaich A" first="Abdelhay" last="Aboulaich">Abdelhay Aboulaich</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire Réactions et Génie des Procédés (LRGP), UPR 3349, Lorraine University, CNRS, 1 rue Grandville, 54001 Nancy Cedex, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Réactions et Génie des Procédés (LRGP), UPR 3349, Lorraine University, CNRS, 1 rue Grandville, 54001 Nancy Cedex</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Billaud, Denis" sort="Billaud, Denis" uniqKey="Billaud D" first="Denis" last="Billaud">Denis Billaud</name>
</author>
<author>
<name sortKey="Abyan, Mouhammad" sort="Abyan, Mouhammad" uniqKey="Abyan M" first="Mouhammad" last="Abyan">Mouhammad Abyan</name>
</author>
<author>
<name sortKey="Balan, Lavinia" sort="Balan, Lavinia" uniqKey="Balan L" first="Lavinia" last="Balan">Lavinia Balan</name>
</author>
<author>
<name sortKey="Gaumet, Jean Jacques" sort="Gaumet, Jean Jacques" uniqKey="Gaumet J" first="Jean-Jacques" last="Gaumet">Jean-Jacques Gaumet</name>
</author>
<author>
<name sortKey="Medjadhi, Ghouti" sort="Medjadhi, Ghouti" uniqKey="Medjadhi G" first="Ghouti" last="Medjadhi">Ghouti Medjadhi</name>
</author>
<author>
<name sortKey="Ghanbaja, Jaafar" sort="Ghanbaja, Jaafar" uniqKey="Ghanbaja J" first="Jaafar" last="Ghanbaja">Jaafar Ghanbaja</name>
</author>
<author>
<name sortKey="Schneider, Raphael" sort="Schneider, Raphael" uniqKey="Schneider R" first="Raphaël" last="Schneider">Raphaël Schneider</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="doi">10.1021/am300232z</idno>
<idno type="RBID">pubmed:22509818</idno>
<idno type="pmid">22509818</idno>
<idno type="wicri:Area/PubMed/Corpus">000073</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000073</idno>
<idno type="wicri:Area/PubMed/Curation">000073</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000073</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">One-pot noninjection route to CdS quantum dots via hydrothermal synthesis.</title>
<author>
<name sortKey="Aboulaich, Abdelhay" sort="Aboulaich, Abdelhay" uniqKey="Aboulaich A" first="Abdelhay" last="Aboulaich">Abdelhay Aboulaich</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire Réactions et Génie des Procédés (LRGP), UPR 3349, Lorraine University, CNRS, 1 rue Grandville, 54001 Nancy Cedex, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Réactions et Génie des Procédés (LRGP), UPR 3349, Lorraine University, CNRS, 1 rue Grandville, 54001 Nancy Cedex</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Billaud, Denis" sort="Billaud, Denis" uniqKey="Billaud D" first="Denis" last="Billaud">Denis Billaud</name>
</author>
<author>
<name sortKey="Abyan, Mouhammad" sort="Abyan, Mouhammad" uniqKey="Abyan M" first="Mouhammad" last="Abyan">Mouhammad Abyan</name>
</author>
<author>
<name sortKey="Balan, Lavinia" sort="Balan, Lavinia" uniqKey="Balan L" first="Lavinia" last="Balan">Lavinia Balan</name>
</author>
<author>
<name sortKey="Gaumet, Jean Jacques" sort="Gaumet, Jean Jacques" uniqKey="Gaumet J" first="Jean-Jacques" last="Gaumet">Jean-Jacques Gaumet</name>
</author>
<author>
<name sortKey="Medjadhi, Ghouti" sort="Medjadhi, Ghouti" uniqKey="Medjadhi G" first="Ghouti" last="Medjadhi">Ghouti Medjadhi</name>
</author>
<author>
<name sortKey="Ghanbaja, Jaafar" sort="Ghanbaja, Jaafar" uniqKey="Ghanbaja J" first="Jaafar" last="Ghanbaja">Jaafar Ghanbaja</name>
</author>
<author>
<name sortKey="Schneider, Raphael" sort="Schneider, Raphael" uniqKey="Schneider R" first="Raphaël" last="Schneider">Raphaël Schneider</name>
</author>
</analytic>
<series>
<title level="j">ACS applied materials & interfaces</title>
<idno type="eISSN">1944-8252</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Water-dispersible CdS quantum dots (QDs) emitting from 510 to 650 nm were synthesized in a simple one-pot noninjection hydrothermal route using cadmium chloride, thiourea, and 3-mercaptopropionic acid (MPA) as starting materials. All these chemicals were loaded at room temperature in a Teflon sealed tube and the reaction mixture heated at 100 °C. The effects of CdCl(2)/thiourea/MPA feed molar ratios, pH, and concentrations of precursors affecting the growth of the CdS QDs, was monitored via the temporal evolution of the optical properties of the CdS nanocrystals. High concentration of precursors and high MPA/Cd feed molar ratios were found to lead to an increase in the diameter of the resulting CdS nanocrystals and of the trap state emission of the dots. The combination of moderate pH value, low concentration of precursors and slow growth rate plays the crucial role in the good optical properties of the obtained CdS nanocrystals. The highest photoluminescence achieved for CdS@MPA QDs of average size 3.5 nm was 20%. As prepared colloids show rather narrow particle size distribution, although all reactants were mixed at room temperature. CdS@MPA QDs were characterized by UV-vis and photoluminescence spectroscopy, powder X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectrometry and MALDI TOF mass spectrometry. This noninjection one-pot approach features easy handling and large-scale production with excellent synthetic reproducibility. Surface passivation of CdS@MPA cores by a wider bandgap material, ZnS, led to enhanced luminescence intensity. CdS@MPA and CdS/ZnS@MPA QDs exhibit high photochemical stability and hold a good potential to be applied in optoelectronic devices and biological applications.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE">
<PMID Version="1">22509818</PMID>
<DateCreated>
<Year>2012</Year>
<Month>05</Month>
<Day>23</Day>
</DateCreated>
<DateCompleted>
<Year>2012</Year>
<Month>09</Month>
<Day>18</Day>
</DateCompleted>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1944-8252</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>4</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2012</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>ACS applied materials & interfaces</Title>
<ISOAbbreviation>ACS Appl Mater Interfaces</ISOAbbreviation>
</Journal>
<ArticleTitle>One-pot noninjection route to CdS quantum dots via hydrothermal synthesis.</ArticleTitle>
<Pagination>
<MedlinePgn>2561-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/am300232z</ELocationID>
<Abstract>
<AbstractText>Water-dispersible CdS quantum dots (QDs) emitting from 510 to 650 nm were synthesized in a simple one-pot noninjection hydrothermal route using cadmium chloride, thiourea, and 3-mercaptopropionic acid (MPA) as starting materials. All these chemicals were loaded at room temperature in a Teflon sealed tube and the reaction mixture heated at 100 °C. The effects of CdCl(2)/thiourea/MPA feed molar ratios, pH, and concentrations of precursors affecting the growth of the CdS QDs, was monitored via the temporal evolution of the optical properties of the CdS nanocrystals. High concentration of precursors and high MPA/Cd feed molar ratios were found to lead to an increase in the diameter of the resulting CdS nanocrystals and of the trap state emission of the dots. The combination of moderate pH value, low concentration of precursors and slow growth rate plays the crucial role in the good optical properties of the obtained CdS nanocrystals. The highest photoluminescence achieved for CdS@MPA QDs of average size 3.5 nm was 20%. As prepared colloids show rather narrow particle size distribution, although all reactants were mixed at room temperature. CdS@MPA QDs were characterized by UV-vis and photoluminescence spectroscopy, powder X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectrometry and MALDI TOF mass spectrometry. This noninjection one-pot approach features easy handling and large-scale production with excellent synthetic reproducibility. Surface passivation of CdS@MPA cores by a wider bandgap material, ZnS, led to enhanced luminescence intensity. CdS@MPA and CdS/ZnS@MPA QDs exhibit high photochemical stability and hold a good potential to be applied in optoelectronic devices and biological applications.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Aboulaich</LastName>
<ForeName>Abdelhay</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire Réactions et Génie des Procédés (LRGP), UPR 3349, Lorraine University, CNRS, 1 rue Grandville, 54001 Nancy Cedex, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Billaud</LastName>
<ForeName>Denis</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Abyan</LastName>
<ForeName>Mouhammad</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Balan</LastName>
<ForeName>Lavinia</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gaumet</LastName>
<ForeName>Jean-Jacques</ForeName>
<Initials>JJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Medjadhi</LastName>
<ForeName>Ghouti</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ghanbaja</LastName>
<ForeName>Jaafar</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schneider</LastName>
<ForeName>Raphaël</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>04</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>ACS Appl Mater Interfaces</MedlineTA>
<NlmUniqueID>101504991</NlmUniqueID>
<ISSNLinking>1944-8244</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2012</Year>
<Month>4</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>4</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>4</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>4</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1021/am300232z</ArticleId>
<ArticleId IdType="pubmed">22509818</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000073 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000073 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:22509818
   |texte=   One-pot noninjection route to CdS quantum dots via hydrothermal synthesis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:22509818" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a LrgpV1 

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024