Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Long-distance energy transfer photosensitizers arising in hybrid nanoparticles leading to fluorescence emission and singlet oxygen luminescence quenching.

Identifieur interne : 000075 ( PubMed/Corpus ); précédent : 000074; suivant : 000076

Long-distance energy transfer photosensitizers arising in hybrid nanoparticles leading to fluorescence emission and singlet oxygen luminescence quenching.

Auteurs : Aymeric Sève ; Pierre Couleaud ; François Lux ; Olivier Tillement ; Philippe Arnoux ; Jean-Claude André ; Céline Frochot

Source :

RBID : pubmed:22362130

English descriptors

Abstract

This paper presents energy transfer occurring in small organically modified core-shell nanoparticles (core lanthanide oxide, shell polysiloxane) (diameter < 10 nm) conjugated with photosensitizers designed for photodynamic therapy applications. These nanoparticles covalently encapsulate a photosensitizing PDT drug in different concentrations. Stable dispersions of the nanoparticles were prepared and the photophysical properties of the photosensitizers were studied and compared to those of the photosensitizers in solution. Increasing the photosensitizer concentration in the nanoparticles was not found to cause any changes in the absorption properties while fluorescence and singlet oxygen quantum yields decreased. As a possible explanation, we have suggested that both long distance energy transfer such as FRET and self-quenching could occur into the nanoparticles. A simple "trend" model of this kind of energy transfer complies with results of experiments on steady state fluorescence and singlet oxygen luminescence.

DOI: 10.1039/c2pp05324a
PubMed: 22362130

Links to Exploration step

pubmed:22362130

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Long-distance energy transfer photosensitizers arising in hybrid nanoparticles leading to fluorescence emission and singlet oxygen luminescence quenching.</title>
<author>
<name sortKey="Seve, Aymeric" sort="Seve, Aymeric" uniqKey="Seve A" first="Aymeric" last="Sève">Aymeric Sève</name>
<affiliation>
<nlm:affiliation>LRGP, Laboratoire Réactions et Génie des Procédés, UPR 3349 CNRS, Nancy, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Couleaud, Pierre" sort="Couleaud, Pierre" uniqKey="Couleaud P" first="Pierre" last="Couleaud">Pierre Couleaud</name>
</author>
<author>
<name sortKey="Lux, Francois" sort="Lux, Francois" uniqKey="Lux F" first="François" last="Lux">François Lux</name>
</author>
<author>
<name sortKey="Tillement, Olivier" sort="Tillement, Olivier" uniqKey="Tillement O" first="Olivier" last="Tillement">Olivier Tillement</name>
</author>
<author>
<name sortKey="Arnoux, Philippe" sort="Arnoux, Philippe" uniqKey="Arnoux P" first="Philippe" last="Arnoux">Philippe Arnoux</name>
</author>
<author>
<name sortKey="Andre, Jean Claude" sort="Andre, Jean Claude" uniqKey="Andre J" first="Jean-Claude" last="André">Jean-Claude André</name>
</author>
<author>
<name sortKey="Frochot, Celine" sort="Frochot, Celine" uniqKey="Frochot C" first="Céline" last="Frochot">Céline Frochot</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="doi">10.1039/c2pp05324a</idno>
<idno type="RBID">pubmed:22362130</idno>
<idno type="pmid">22362130</idno>
<idno type="wicri:Area/PubMed/Corpus">000075</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000075</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Long-distance energy transfer photosensitizers arising in hybrid nanoparticles leading to fluorescence emission and singlet oxygen luminescence quenching.</title>
<author>
<name sortKey="Seve, Aymeric" sort="Seve, Aymeric" uniqKey="Seve A" first="Aymeric" last="Sève">Aymeric Sève</name>
<affiliation>
<nlm:affiliation>LRGP, Laboratoire Réactions et Génie des Procédés, UPR 3349 CNRS, Nancy, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Couleaud, Pierre" sort="Couleaud, Pierre" uniqKey="Couleaud P" first="Pierre" last="Couleaud">Pierre Couleaud</name>
</author>
<author>
<name sortKey="Lux, Francois" sort="Lux, Francois" uniqKey="Lux F" first="François" last="Lux">François Lux</name>
</author>
<author>
<name sortKey="Tillement, Olivier" sort="Tillement, Olivier" uniqKey="Tillement O" first="Olivier" last="Tillement">Olivier Tillement</name>
</author>
<author>
<name sortKey="Arnoux, Philippe" sort="Arnoux, Philippe" uniqKey="Arnoux P" first="Philippe" last="Arnoux">Philippe Arnoux</name>
</author>
<author>
<name sortKey="Andre, Jean Claude" sort="Andre, Jean Claude" uniqKey="Andre J" first="Jean-Claude" last="André">Jean-Claude André</name>
</author>
<author>
<name sortKey="Frochot, Celine" sort="Frochot, Celine" uniqKey="Frochot C" first="Céline" last="Frochot">Céline Frochot</name>
</author>
</analytic>
<series>
<title level="j">Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology</title>
<idno type="eISSN">1474-9092</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Drug Carriers (chemistry)</term>
<term>Energy Transfer</term>
<term>Fluorescence</term>
<term>Fluorescence Resonance Energy Transfer</term>
<term>Humans</term>
<term>Lanthanum (chemistry)</term>
<term>Luminescence</term>
<term>Models, Chemical</term>
<term>Nanoparticles (chemistry)</term>
<term>Neoplasms (drug therapy)</term>
<term>Oxides (chemistry)</term>
<term>Photochemical Processes</term>
<term>Photochemotherapy (methods)</term>
<term>Photosensitizing Agents (administration & dosage)</term>
<term>Photosensitizing Agents (chemistry)</term>
<term>Siloxanes (chemistry)</term>
<term>Singlet Oxygen (chemistry)</term>
<term>Spectrometry, Fluorescence</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="administration & dosage" xml:lang="en">
<term>Photosensitizing Agents</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Drug Carriers</term>
<term>Lanthanum</term>
<term>Oxides</term>
<term>Photosensitizing Agents</term>
<term>Siloxanes</term>
<term>Singlet Oxygen</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Nanoparticles</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Neoplasms</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Photochemotherapy</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Energy Transfer</term>
<term>Fluorescence</term>
<term>Fluorescence Resonance Energy Transfer</term>
<term>Humans</term>
<term>Luminescence</term>
<term>Models, Chemical</term>
<term>Photochemical Processes</term>
<term>Spectrometry, Fluorescence</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper presents energy transfer occurring in small organically modified core-shell nanoparticles (core lanthanide oxide, shell polysiloxane) (diameter < 10 nm) conjugated with photosensitizers designed for photodynamic therapy applications. These nanoparticles covalently encapsulate a photosensitizing PDT drug in different concentrations. Stable dispersions of the nanoparticles were prepared and the photophysical properties of the photosensitizers were studied and compared to those of the photosensitizers in solution. Increasing the photosensitizer concentration in the nanoparticles was not found to cause any changes in the absorption properties while fluorescence and singlet oxygen quantum yields decreased. As a possible explanation, we have suggested that both long distance energy transfer such as FRET and self-quenching could occur into the nanoparticles. A simple "trend" model of this kind of energy transfer complies with results of experiments on steady state fluorescence and singlet oxygen luminescence.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">22362130</PMID>
<DateCreated>
<Year>2015</Year>
<Month>08</Month>
<Day>25</Day>
</DateCreated>
<DateCompleted>
<Year>2016</Year>
<Month>04</Month>
<Day>22</Day>
</DateCompleted>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1474-9092</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2012</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology</Title>
<ISOAbbreviation>Photochem. Photobiol. Sci.</ISOAbbreviation>
</Journal>
<ArticleTitle>Long-distance energy transfer photosensitizers arising in hybrid nanoparticles leading to fluorescence emission and singlet oxygen luminescence quenching.</ArticleTitle>
<Pagination>
<MedlinePgn>803-11</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1039/c2pp05324a</ELocationID>
<Abstract>
<AbstractText>This paper presents energy transfer occurring in small organically modified core-shell nanoparticles (core lanthanide oxide, shell polysiloxane) (diameter < 10 nm) conjugated with photosensitizers designed for photodynamic therapy applications. These nanoparticles covalently encapsulate a photosensitizing PDT drug in different concentrations. Stable dispersions of the nanoparticles were prepared and the photophysical properties of the photosensitizers were studied and compared to those of the photosensitizers in solution. Increasing the photosensitizer concentration in the nanoparticles was not found to cause any changes in the absorption properties while fluorescence and singlet oxygen quantum yields decreased. As a possible explanation, we have suggested that both long distance energy transfer such as FRET and self-quenching could occur into the nanoparticles. A simple "trend" model of this kind of energy transfer complies with results of experiments on steady state fluorescence and singlet oxygen luminescence.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sève</LastName>
<ForeName>Aymeric</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>LRGP, Laboratoire Réactions et Génie des Procédés, UPR 3349 CNRS, Nancy, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Couleaud</LastName>
<ForeName>Pierre</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lux</LastName>
<ForeName>François</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tillement</LastName>
<ForeName>Olivier</ForeName>
<Initials>O</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Arnoux</LastName>
<ForeName>Philippe</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>André</LastName>
<ForeName>Jean-Claude</ForeName>
<Initials>JC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Frochot</LastName>
<ForeName>Céline</ForeName>
<Initials>C</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>02</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Photochem Photobiol Sci</MedlineTA>
<NlmUniqueID>101124451</NlmUniqueID>
<ISSNLinking>1474-905X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004337">Drug Carriers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010087">Oxides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017319">Photosensitizing Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012833">Siloxanes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>17778-80-2</RegistryNumber>
<NameOfSubstance UI="D026082">Singlet Oxygen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4QI5EL790W</RegistryNumber>
<NameOfSubstance UI="C103829">lanthanum oxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>6I3K30563S</RegistryNumber>
<NameOfSubstance UI="D007811">Lanthanum</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004337">Drug Carriers</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004735">Energy Transfer</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005453">Fluorescence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D031541">Fluorescence Resonance Energy Transfer</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D007811">Lanthanum</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D049449">Luminescence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008956">Models, Chemical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D053758">Nanoparticles</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009369">Neoplasms</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000188">drug therapy</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D010087">Oxides</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D055668">Photochemical Processes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D010778">Photochemotherapy</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D017319">Photosensitizing Agents</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000008">administration & dosage</QualifierName>
<QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D012833">Siloxanes</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D026082">Singlet Oxygen</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013050">Spectrometry, Fluorescence</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2012</Year>
<Month>2</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="epublish">
<Year>2012</Year>
<Month>4</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>2</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>3</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>4</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1039/c2pp05324a</ArticleId>
<ArticleId IdType="pubmed">22362130</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000075 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000075 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:22362130
   |texte=   Long-distance energy transfer photosensitizers arising in hybrid nanoparticles leading to fluorescence emission and singlet oxygen luminescence quenching.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:22362130" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a LrgpV1 

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024