Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Experimental and modeling study of the oxidation of n-butane in a jet stirred reactor using cw-CRDS measurements.

Identifieur interne : 000048 ( PubMed/Corpus ); précédent : 000047; suivant : 000049

Experimental and modeling study of the oxidation of n-butane in a jet stirred reactor using cw-CRDS measurements.

Auteurs : Chiheb Bahrini ; Pranay Morajkar ; Coralie Schoemaecker ; Ophélie Frottier ; Olivier Herbinet ; Pierre-Alexandre Glaude ; Frédérique Battin-Leclerc ; Christa Fittschen

Source :

RBID : pubmed:24135810

Abstract

The gas-phase oxidation of n-butane has been studied in an atmospheric jet-stirred reactor (JSR) at temperatures up to 950 K. For the first time, continuous wave cavity ring-down spectroscopy (cw-CRDS) in the near-infrared has been used, together with gas chromatography (GC), to analyze the products formed during its oxidation. In addition to the quantification of formaldehyde and water, which is always difficult by GC, cw-CRDS allowed as well the quantification of hydrogen peroxide (H2O2). A comparison of the obtained mole fraction temperature profiles with simulations using a detailed gas-phase mechanism shows a good agreement at temperatures below 750 K, but an overestimation of the overall reactivity above this temperature. Also, a strong overestimation was found for the H2O2 mole fraction at higher temperatures. In order to improve the agreement between model and experimental results, two modifications have been implemented to the model: (a) the rate constant for the decomposition of H2O2 (+M) ↔ 2OH (+M) has been updated to the value recently proposed by Troe (Combust. Flame, 2011, 158, 594-601) and (b) a temperature dependent heterogeneous destruction of H2O2 on the hot reactor walls with assumed rate parameters has been added. The improvement (a) slows down the overall reactivity at higher temperatures, but has a negligible impact on the maximal H2O2 mole fraction. Improvement (b) has also a small impact on the overall reactivity at higher temperatures, but a large effect on the maximal H2O2 mole fraction. Both modifications lead to an improved agreement between model and experiment for the oxidation of n-butane in a JSR at temperatures above 750 K.

DOI: 10.1039/c3cp53335b
PubMed: 24135810

Links to Exploration step

pubmed:24135810

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Experimental and modeling study of the oxidation of n-butane in a jet stirred reactor using cw-CRDS measurements.</title>
<author>
<name sortKey="Bahrini, Chiheb" sort="Bahrini, Chiheb" uniqKey="Bahrini C" first="Chiheb" last="Bahrini">Chiheb Bahrini</name>
<affiliation>
<nlm:affiliation>Laboratoire de Réactions et Génie des Procédés, CNRS - Université de Lorraine, ENSIC, 1 rue Grandville, 54001 Nancy, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Morajkar, Pranay" sort="Morajkar, Pranay" uniqKey="Morajkar P" first="Pranay" last="Morajkar">Pranay Morajkar</name>
</author>
<author>
<name sortKey="Schoemaecker, Coralie" sort="Schoemaecker, Coralie" uniqKey="Schoemaecker C" first="Coralie" last="Schoemaecker">Coralie Schoemaecker</name>
</author>
<author>
<name sortKey="Frottier, Ophelie" sort="Frottier, Ophelie" uniqKey="Frottier O" first="Ophélie" last="Frottier">Ophélie Frottier</name>
</author>
<author>
<name sortKey="Herbinet, Olivier" sort="Herbinet, Olivier" uniqKey="Herbinet O" first="Olivier" last="Herbinet">Olivier Herbinet</name>
</author>
<author>
<name sortKey="Glaude, Pierre Alexandre" sort="Glaude, Pierre Alexandre" uniqKey="Glaude P" first="Pierre-Alexandre" last="Glaude">Pierre-Alexandre Glaude</name>
</author>
<author>
<name sortKey="Battin Leclerc, Frederique" sort="Battin Leclerc, Frederique" uniqKey="Battin Leclerc F" first="Frédérique" last="Battin-Leclerc">Frédérique Battin-Leclerc</name>
</author>
<author>
<name sortKey="Fittschen, Christa" sort="Fittschen, Christa" uniqKey="Fittschen C" first="Christa" last="Fittschen">Christa Fittschen</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="doi">10.1039/c3cp53335b</idno>
<idno type="RBID">pubmed:24135810</idno>
<idno type="pmid">24135810</idno>
<idno type="wicri:Area/PubMed/Corpus">000048</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000048</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Experimental and modeling study of the oxidation of n-butane in a jet stirred reactor using cw-CRDS measurements.</title>
<author>
<name sortKey="Bahrini, Chiheb" sort="Bahrini, Chiheb" uniqKey="Bahrini C" first="Chiheb" last="Bahrini">Chiheb Bahrini</name>
<affiliation>
<nlm:affiliation>Laboratoire de Réactions et Génie des Procédés, CNRS - Université de Lorraine, ENSIC, 1 rue Grandville, 54001 Nancy, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Morajkar, Pranay" sort="Morajkar, Pranay" uniqKey="Morajkar P" first="Pranay" last="Morajkar">Pranay Morajkar</name>
</author>
<author>
<name sortKey="Schoemaecker, Coralie" sort="Schoemaecker, Coralie" uniqKey="Schoemaecker C" first="Coralie" last="Schoemaecker">Coralie Schoemaecker</name>
</author>
<author>
<name sortKey="Frottier, Ophelie" sort="Frottier, Ophelie" uniqKey="Frottier O" first="Ophélie" last="Frottier">Ophélie Frottier</name>
</author>
<author>
<name sortKey="Herbinet, Olivier" sort="Herbinet, Olivier" uniqKey="Herbinet O" first="Olivier" last="Herbinet">Olivier Herbinet</name>
</author>
<author>
<name sortKey="Glaude, Pierre Alexandre" sort="Glaude, Pierre Alexandre" uniqKey="Glaude P" first="Pierre-Alexandre" last="Glaude">Pierre-Alexandre Glaude</name>
</author>
<author>
<name sortKey="Battin Leclerc, Frederique" sort="Battin Leclerc, Frederique" uniqKey="Battin Leclerc F" first="Frédérique" last="Battin-Leclerc">Frédérique Battin-Leclerc</name>
</author>
<author>
<name sortKey="Fittschen, Christa" sort="Fittschen, Christa" uniqKey="Fittschen C" first="Christa" last="Fittschen">Christa Fittschen</name>
</author>
</analytic>
<series>
<title level="j">Physical chemistry chemical physics : PCCP</title>
<idno type="eISSN">1463-9084</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The gas-phase oxidation of n-butane has been studied in an atmospheric jet-stirred reactor (JSR) at temperatures up to 950 K. For the first time, continuous wave cavity ring-down spectroscopy (cw-CRDS) in the near-infrared has been used, together with gas chromatography (GC), to analyze the products formed during its oxidation. In addition to the quantification of formaldehyde and water, which is always difficult by GC, cw-CRDS allowed as well the quantification of hydrogen peroxide (H2O2). A comparison of the obtained mole fraction temperature profiles with simulations using a detailed gas-phase mechanism shows a good agreement at temperatures below 750 K, but an overestimation of the overall reactivity above this temperature. Also, a strong overestimation was found for the H2O2 mole fraction at higher temperatures. In order to improve the agreement between model and experimental results, two modifications have been implemented to the model: (a) the rate constant for the decomposition of H2O2 (+M) ↔ 2OH (+M) has been updated to the value recently proposed by Troe (Combust. Flame, 2011, 158, 594-601) and (b) a temperature dependent heterogeneous destruction of H2O2 on the hot reactor walls with assumed rate parameters has been added. The improvement (a) slows down the overall reactivity at higher temperatures, but has a negligible impact on the maximal H2O2 mole fraction. Improvement (b) has also a small impact on the overall reactivity at higher temperatures, but a large effect on the maximal H2O2 mole fraction. Both modifications lead to an improved agreement between model and experiment for the oxidation of n-butane in a JSR at temperatures above 750 K.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE">
<PMID Version="1">24135810</PMID>
<DateCreated>
<Year>2013</Year>
<Month>10</Month>
<Day>31</Day>
</DateCreated>
<DateCompleted>
<Year>2014</Year>
<Month>06</Month>
<Day>02</Day>
</DateCompleted>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1463-9084</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15</Volume>
<Issue>45</Issue>
<PubDate>
<Year>2013</Year>
<Month>Dec</Month>
<Day>7</Day>
</PubDate>
</JournalIssue>
<Title>Physical chemistry chemical physics : PCCP</Title>
<ISOAbbreviation>Phys Chem Chem Phys</ISOAbbreviation>
</Journal>
<ArticleTitle>Experimental and modeling study of the oxidation of n-butane in a jet stirred reactor using cw-CRDS measurements.</ArticleTitle>
<Pagination>
<MedlinePgn>19686-98</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1039/c3cp53335b</ELocationID>
<Abstract>
<AbstractText>The gas-phase oxidation of n-butane has been studied in an atmospheric jet-stirred reactor (JSR) at temperatures up to 950 K. For the first time, continuous wave cavity ring-down spectroscopy (cw-CRDS) in the near-infrared has been used, together with gas chromatography (GC), to analyze the products formed during its oxidation. In addition to the quantification of formaldehyde and water, which is always difficult by GC, cw-CRDS allowed as well the quantification of hydrogen peroxide (H2O2). A comparison of the obtained mole fraction temperature profiles with simulations using a detailed gas-phase mechanism shows a good agreement at temperatures below 750 K, but an overestimation of the overall reactivity above this temperature. Also, a strong overestimation was found for the H2O2 mole fraction at higher temperatures. In order to improve the agreement between model and experimental results, two modifications have been implemented to the model: (a) the rate constant for the decomposition of H2O2 (+M) ↔ 2OH (+M) has been updated to the value recently proposed by Troe (Combust. Flame, 2011, 158, 594-601) and (b) a temperature dependent heterogeneous destruction of H2O2 on the hot reactor walls with assumed rate parameters has been added. The improvement (a) slows down the overall reactivity at higher temperatures, but has a negligible impact on the maximal H2O2 mole fraction. Improvement (b) has also a small impact on the overall reactivity at higher temperatures, but a large effect on the maximal H2O2 mole fraction. Both modifications lead to an improved agreement between model and experiment for the oxidation of n-butane in a JSR at temperatures above 750 K.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bahrini</LastName>
<ForeName>Chiheb</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire de Réactions et Génie des Procédés, CNRS - Université de Lorraine, ENSIC, 1 rue Grandville, 54001 Nancy, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Morajkar</LastName>
<ForeName>Pranay</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schoemaecker</LastName>
<ForeName>Coralie</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Frottier</LastName>
<ForeName>Ophélie</ForeName>
<Initials>O</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Herbinet</LastName>
<ForeName>Olivier</ForeName>
<Initials>O</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Glaude</LastName>
<ForeName>Pierre-Alexandre</ForeName>
<Initials>PA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Battin-Leclerc</LastName>
<ForeName>Frédérique</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fittschen</LastName>
<ForeName>Christa</ForeName>
<Initials>C</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>227669</GrantID>
<Agency>European Research Council</Agency>
<Country>International</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>10</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Phys Chem Chem Phys</MedlineTA>
<NlmUniqueID>100888160</NlmUniqueID>
<ISSNLinking>1463-9076</ISSNLinking>
</MedlineJournalInfo>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>J Phys Chem A. 2010 Sep 2;114(34):9098-109</RefSource>
<PMID Version="1">20690588</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Environ Sci (China). 2012;24(1):78-86</RefSource>
<PMID Version="1">22783617</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Phys Chem A. 2012 Jun 21;116(24):6142-58</RefSource>
<PMID Version="1">22257166</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Chem Chem Phys. 2011 Jan 7;13(1):296-308</RefSource>
<PMID Version="1">21031192</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<OtherID Source="NLM">EMS55568</OtherID>
<OtherID Source="NLM">PMC3833050</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2013</Year>
<Month>10</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="epublish">
<Year>2013</Year>
<Month>10</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>10</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>10</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>10</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1039/c3cp53335b</ArticleId>
<ArticleId IdType="pubmed">24135810</ArticleId>
<ArticleId IdType="pmc">PMC3833050</ArticleId>
<ArticleId IdType="mid">EMS55568</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000048 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000048 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24135810
   |texte=   Experimental and modeling study of the oxidation of n-butane in a jet stirred reactor using cw-CRDS measurements.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:24135810" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a LrgpV1 

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024