Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Enhanced long-term microcircuit plasticity in the valproic Acid animal model of autism.

Identifieur interne : 000119 ( PubMed/Checkpoint ); précédent : 000118; suivant : 000120

Enhanced long-term microcircuit plasticity in the valproic Acid animal model of autism.

Auteurs : Guilherme Testa Silva [Suisse] ; Jean-Vincent Le Bé ; Imad Riachi ; Tania Rinaldi ; Kamila Markram ; Henry Markram

Source :

RBID : pubmed:21423407

Abstract

A single intra-peritoneal injection of valproic acid (VPA) on embryonic day (ED) 11.5 to pregnant rats has been shown to produce severe autistic-like symptoms in the offspring. Previous studies showed that the microcircuitry is hyperreactive due to hyperconnectivity of glutamatergic synapses and hyperplastic due to over-expression of NMDA receptors. These changes were restricted to the dimensions of a minicolumn (<50 μm). In the present study, we explored whether Long Term Microcircuit Plasticity (LTMP) was altered in this animal model. We performed multi-neuron patch-clamp recordings on clusters of layer 5 pyramidal cells in somatosensory cortex brain slices (PN 12-15), mapped the connectivity and characterized the synaptic properties for connected neurons. Pipettes were then withdrawn and the slice was perfused with 100 μM sodium glutamate in artificial cerebrospinal fluid in the recording chamber for 12 h. When we re-patched the same cluster of neurons, we found enhanced LTMP only at inter-somatic distances beyond minicolumnar dimensions. These data suggest that hyperconnectivity is already near its peak within the dimensions of the minicolumn in the treated animals and that LTMP, which is normally restricted to within a minicolumn, spills over to drive hyperconnectivity across the dimensions of a minicolumn. This study provides further evidence to support the notion that the neocortex is highly plastic in response to new experiences in this animal model of autism.

DOI: 10.3389/neuro.19.001.2009
PubMed: 21423407


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:21423407

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Enhanced long-term microcircuit plasticity in the valproic Acid animal model of autism.</title>
<author>
<name sortKey="Silva, Guilherme Testa" sort="Silva, Guilherme Testa" uniqKey="Silva G" first="Guilherme Testa" last="Silva">Guilherme Testa Silva</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Neural Microcircuitry, Brain and Mind Institute, EPFL Lausanne, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Laboratory of Neural Microcircuitry, Brain and Mind Institute, EPFL Lausanne</wicri:regionArea>
<wicri:noRegion>EPFL Lausanne</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Le Be, Jean Vincent" sort="Le Be, Jean Vincent" uniqKey="Le Be J" first="Jean-Vincent" last="Le Bé">Jean-Vincent Le Bé</name>
</author>
<author>
<name sortKey="Riachi, Imad" sort="Riachi, Imad" uniqKey="Riachi I" first="Imad" last="Riachi">Imad Riachi</name>
</author>
<author>
<name sortKey="Rinaldi, Tania" sort="Rinaldi, Tania" uniqKey="Rinaldi T" first="Tania" last="Rinaldi">Tania Rinaldi</name>
</author>
<author>
<name sortKey="Markram, Kamila" sort="Markram, Kamila" uniqKey="Markram K" first="Kamila" last="Markram">Kamila Markram</name>
</author>
<author>
<name sortKey="Markram, Henry" sort="Markram, Henry" uniqKey="Markram H" first="Henry" last="Markram">Henry Markram</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="doi">10.3389/neuro.19.001.2009</idno>
<idno type="RBID">pubmed:21423407</idno>
<idno type="pmid">21423407</idno>
<idno type="wicri:Area/PubMed/Corpus">000127</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000127</idno>
<idno type="wicri:Area/PubMed/Curation">000127</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000127</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000127</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000127</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Enhanced long-term microcircuit plasticity in the valproic Acid animal model of autism.</title>
<author>
<name sortKey="Silva, Guilherme Testa" sort="Silva, Guilherme Testa" uniqKey="Silva G" first="Guilherme Testa" last="Silva">Guilherme Testa Silva</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Neural Microcircuitry, Brain and Mind Institute, EPFL Lausanne, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Laboratory of Neural Microcircuitry, Brain and Mind Institute, EPFL Lausanne</wicri:regionArea>
<wicri:noRegion>EPFL Lausanne</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Le Be, Jean Vincent" sort="Le Be, Jean Vincent" uniqKey="Le Be J" first="Jean-Vincent" last="Le Bé">Jean-Vincent Le Bé</name>
</author>
<author>
<name sortKey="Riachi, Imad" sort="Riachi, Imad" uniqKey="Riachi I" first="Imad" last="Riachi">Imad Riachi</name>
</author>
<author>
<name sortKey="Rinaldi, Tania" sort="Rinaldi, Tania" uniqKey="Rinaldi T" first="Tania" last="Rinaldi">Tania Rinaldi</name>
</author>
<author>
<name sortKey="Markram, Kamila" sort="Markram, Kamila" uniqKey="Markram K" first="Kamila" last="Markram">Kamila Markram</name>
</author>
<author>
<name sortKey="Markram, Henry" sort="Markram, Henry" uniqKey="Markram H" first="Henry" last="Markram">Henry Markram</name>
</author>
</analytic>
<series>
<title level="j">Frontiers in synaptic neuroscience</title>
<idno type="eISSN">1663-3563</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A single intra-peritoneal injection of valproic acid (VPA) on embryonic day (ED) 11.5 to pregnant rats has been shown to produce severe autistic-like symptoms in the offspring. Previous studies showed that the microcircuitry is hyperreactive due to hyperconnectivity of glutamatergic synapses and hyperplastic due to over-expression of NMDA receptors. These changes were restricted to the dimensions of a minicolumn (<50 μm). In the present study, we explored whether Long Term Microcircuit Plasticity (LTMP) was altered in this animal model. We performed multi-neuron patch-clamp recordings on clusters of layer 5 pyramidal cells in somatosensory cortex brain slices (PN 12-15), mapped the connectivity and characterized the synaptic properties for connected neurons. Pipettes were then withdrawn and the slice was perfused with 100 μM sodium glutamate in artificial cerebrospinal fluid in the recording chamber for 12 h. When we re-patched the same cluster of neurons, we found enhanced LTMP only at inter-somatic distances beyond minicolumnar dimensions. These data suggest that hyperconnectivity is already near its peak within the dimensions of the minicolumn in the treated animals and that LTMP, which is normally restricted to within a minicolumn, spills over to drive hyperconnectivity across the dimensions of a minicolumn. This study provides further evidence to support the notion that the neocortex is highly plastic in response to new experiences in this animal model of autism.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE">
<PMID Version="1">21423407</PMID>
<DateCreated>
<Year>2011</Year>
<Month>03</Month>
<Day>22</Day>
</DateCreated>
<DateCompleted>
<Year>2011</Year>
<Month>07</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>08</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1663-3563</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>1</Volume>
<PubDate>
<Year>2009</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in synaptic neuroscience</Title>
<ISOAbbreviation>Front Synaptic Neurosci</ISOAbbreviation>
</Journal>
<ArticleTitle>Enhanced long-term microcircuit plasticity in the valproic Acid animal model of autism.</ArticleTitle>
<Pagination>
<MedlinePgn>1</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/neuro.19.001.2009</ELocationID>
<Abstract>
<AbstractText>A single intra-peritoneal injection of valproic acid (VPA) on embryonic day (ED) 11.5 to pregnant rats has been shown to produce severe autistic-like symptoms in the offspring. Previous studies showed that the microcircuitry is hyperreactive due to hyperconnectivity of glutamatergic synapses and hyperplastic due to over-expression of NMDA receptors. These changes were restricted to the dimensions of a minicolumn (<50 μm). In the present study, we explored whether Long Term Microcircuit Plasticity (LTMP) was altered in this animal model. We performed multi-neuron patch-clamp recordings on clusters of layer 5 pyramidal cells in somatosensory cortex brain slices (PN 12-15), mapped the connectivity and characterized the synaptic properties for connected neurons. Pipettes were then withdrawn and the slice was perfused with 100 μM sodium glutamate in artificial cerebrospinal fluid in the recording chamber for 12 h. When we re-patched the same cluster of neurons, we found enhanced LTMP only at inter-somatic distances beyond minicolumnar dimensions. These data suggest that hyperconnectivity is already near its peak within the dimensions of the minicolumn in the treated animals and that LTMP, which is normally restricted to within a minicolumn, spills over to drive hyperconnectivity across the dimensions of a minicolumn. This study provides further evidence to support the notion that the neocortex is highly plastic in response to new experiences in this animal model of autism.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Silva</LastName>
<ForeName>Guilherme Testa</ForeName>
<Initials>GT</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Neural Microcircuitry, Brain and Mind Institute, EPFL Lausanne, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Le Bé</LastName>
<ForeName>Jean-Vincent</ForeName>
<Initials>JV</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Riachi</LastName>
<ForeName>Imad</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rinaldi</LastName>
<ForeName>Tania</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Markram</LastName>
<ForeName>Kamila</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Markram</LastName>
<ForeName>Henry</ForeName>
<Initials>H</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>06</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Synaptic Neurosci</MedlineTA>
<NlmUniqueID>101548972</NlmUniqueID>
<ISSNLinking>1663-3563</ISSNLinking>
</MedlineJournalInfo>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2003 Oct 22;23(29):9565-74</RefSource>
<PMID Version="1">14573536</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur Child Adolesc Psychiatry. 2001 Mar;10(1):58-66</RefSource>
<PMID Version="1">11315537</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genes Brain Behav. 2003 Oct;2(5):255-67</RefSource>
<PMID Version="1">14606691</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurosci. 2004 Jul;5(7):545-52</RefSource>
<PMID Version="1">15208696</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Child Psychol Psychiatry. 2004 Sep;45(6):1115-22</RefSource>
<PMID Version="1">15257668</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Psychiatry. 2004 Nov;161(11):2117-20</RefSource>
<PMID Version="1">15514415</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Autism Dev Disord. 2005 Oct;35(5):575-83</RefSource>
<PMID Version="1">16167091</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2005 Nov 3;48(3):497-507</RefSource>
<PMID Version="1">16269366</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Psychol. 2006;57:27-53</RefSource>
<PMID Version="1">16318588</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biol Psychol. 2006 Jul;73(1):49-60</RefSource>
<PMID Version="1">16500019</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):13214-9</RefSource>
<PMID Version="1">16924105</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Psychiatry. 2001 Jan;6(1):13-34</RefSource>
<PMID Version="1">11244481</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Biobehav Rev. 2000 May;24(3):355-64</RefSource>
<PMID Version="1">10781695</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann N Y Acad Sci. 2001 May;935:107-17</RefSource>
<PMID Version="1">11411161</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2001 Aug 1;21(15):5752-63</RefSource>
<PMID Version="1">11466447</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Autism. 2001 Mar;5(1):67-80</RefSource>
<PMID Version="1">11708391</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2002 Feb 12;58(3):428-32</RefSource>
<PMID Version="1">11839843</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2002 Nov 8;298(5596):1191-4</RefSource>
<PMID Version="1">12424363</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2003 Jan;13(1):2-4</RefSource>
<PMID Version="1">12466209</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cogn Neurosci. 2003 Feb 15;15(2):218-25</RefSource>
<PMID Version="1">12676059</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Dev. 2003 Apr;25(3):166-72</RefSource>
<PMID Version="1">12689694</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1957 Jul;20(4):408-34</RefSource>
<PMID Version="1">13439410</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Mol Neurobiol. 2003 Oct;23(4-5):727-38</RefSource>
<PMID Version="1">14514027</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5323-8</RefSource>
<PMID Version="1">9560274</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neural Comput. 1998 May 15;10(4):821-35</RefSource>
<PMID Version="1">9573407</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Learn Mem. 1998 Jul-Sep;70(1-2):101-12</RefSource>
<PMID Version="1">9753590</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Neurol. 1998 Jan;43(1):7-14</RefSource>
<PMID Version="1">9450763</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lancet. 2003 Oct 4;362(9390):1133-41</RefSource>
<PMID Version="1">14550703</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Neurosci. 1992;15:353-75</RefSource>
<PMID Version="1">1575447</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Med Child Neurol. 2005 Jul;47(7):500-3</RefSource>
<PMID Version="1">15991873</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Psychol Hum Percept Perform. 2006 Oct;32(5):1155-68</RefSource>
<PMID Version="1">17002528</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Intellect Disabil. 2007 Dec;11(4):359-70</RefSource>
<PMID Version="1">18029412</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Child Dev. 1996 Aug;67(4):1816-35</RefSource>
<PMID Version="1">8890510</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Novartis Found Symp. 2003;251:177-87; discussion 187-97, 281-97</RefSource>
<PMID Version="1">14521193</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscientist. 2006 Oct;12(5):435-41</RefSource>
<PMID Version="1">16957005</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biol Psychiatry. 2007 Feb 15;61(4):521-37</RefSource>
<PMID Version="1">17276749</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 2007 May 15;45(9):2125-34</RefSource>
<PMID Version="1">17321555</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychopharmacology. 2008 Mar;33(4):901-12</RefSource>
<PMID Version="1">17507914</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11489-94</RefSource>
<PMID Version="1">17592139</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2008 Apr;18(4):763-70</RefSource>
<PMID Version="1">17638926</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2007 Aug 14;104(33):13501-6</RefSource>
<PMID Version="1">17675408</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Psychiatry. 2008 Jan;13(1):4-26</RefSource>
<PMID Version="1">17848915</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Cogn Sci. 2007 Nov;11(11):489-97</RefSource>
<PMID Version="1">17988930</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Front Neurosci. 2007 Nov;1(1):77-96</RefSource>
<PMID Version="1">18982120</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc R Soc Lond B Biol Sci. 1977 Jul 28;198(1130):1-59</RefSource>
<PMID Version="1">20635</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 1990 Aug 1;298(1):97-112</RefSource>
<PMID Version="1">2212100</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci Methods. 1988 Aug;25(1):1-11</RefSource>
<PMID Version="1">3146670</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 1974 Dec 1;158(3):267-93</RefSource>
<PMID Version="1">4436456</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Autism Dev Disord. 1995 Jun;25(3):231-48</RefSource>
<PMID Version="1">7559290</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 1993 Sep-Oct;3(5):399-411</RefSource>
<PMID Version="1">8260808</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):719-23</RefSource>
<PMID Version="1">9012851</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 1997 Apr;120 ( Pt 4):701-22</RefSource>
<PMID Version="1">9153131</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroreport. 1997 Nov 10;8(16):3513-8</RefSource>
<PMID Version="1">9427317</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2000 Jan 1;20(1):1-7</RefSource>
<PMID Version="1">10627575</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cortex. 2003 Sep-Dec;39(4-5):1129-38</RefSource>
<PMID Version="1">14584570</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<OtherID Source="NLM">PMC3059606</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">autism spectrum disorders</Keyword>
<Keyword MajorTopicYN="N">layer 5 pyramidal cells</Keyword>
<Keyword MajorTopicYN="N">long-term microcircuit plasticity</Keyword>
<Keyword MajorTopicYN="N">microcircuit plasticity</Keyword>
<Keyword MajorTopicYN="N">neocortex</Keyword>
<Keyword MajorTopicYN="N">synaptic plasticity</Keyword>
<Keyword MajorTopicYN="N">valproic acid</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2008</Year>
<Month>12</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>6</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="epublish">
<Year>2009</Year>
<Month>6</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>3</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>1</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>1</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.3389/neuro.19.001.2009</ArticleId>
<ArticleId IdType="pubmed">21423407</ArticleId>
<ArticleId IdType="pmc">PMC3059606</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suisse</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Le Be, Jean Vincent" sort="Le Be, Jean Vincent" uniqKey="Le Be J" first="Jean-Vincent" last="Le Bé">Jean-Vincent Le Bé</name>
<name sortKey="Markram, Henry" sort="Markram, Henry" uniqKey="Markram H" first="Henry" last="Markram">Henry Markram</name>
<name sortKey="Markram, Kamila" sort="Markram, Kamila" uniqKey="Markram K" first="Kamila" last="Markram">Kamila Markram</name>
<name sortKey="Riachi, Imad" sort="Riachi, Imad" uniqKey="Riachi I" first="Imad" last="Riachi">Imad Riachi</name>
<name sortKey="Rinaldi, Tania" sort="Rinaldi, Tania" uniqKey="Rinaldi T" first="Tania" last="Rinaldi">Tania Rinaldi</name>
</noCountry>
<country name="Suisse">
<noRegion>
<name sortKey="Silva, Guilherme Testa" sort="Silva, Guilherme Testa" uniqKey="Silva G" first="Guilherme Testa" last="Silva">Guilherme Testa Silva</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000119 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000119 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:21423407
   |texte=   Enhanced long-term microcircuit plasticity in the valproic Acid animal model of autism.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:21423407" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a LrgpV1 

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024