Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Gas-phase hydrodeoxygenation of guaiacol over iron-based catalysts. Effect of gases composition, iron load and supports (silica and activated carbon)

Identifieur interne : 000A37 ( PascalFrancis/Curation ); précédent : 000A36; suivant : 000A38

Gas-phase hydrodeoxygenation of guaiacol over iron-based catalysts. Effect of gases composition, iron load and supports (silica and activated carbon)

Auteurs : R. Olcese [France] ; M. M. Bettahar [France] ; B. Malaman [France] ; J. Ghanbaja [France] ; L. Tibavizco [France] ; D. Petitjean [France] ; A. Dufour [France]

Source :

RBID : Pascal:13-0120195

Descripteurs français

English descriptors

Abstract

Fe/Si02 is shown to be a selective catalyst for guaiacol hydrodeoxygenation (HDO). Guaiacol is used as a model compound to study the conversion of lignin pyrolysis vapours into aromatics (benzene, phenols). The effect of each individual gas present in a pyrolysis gas (H2, CO, CO2, H2O, CH4) on the selectivity of a 10wt% Fe/SiO2 catalyst is studied (673 K, atmospheric pressure, 50 mol% H2, 1/WHSV = 0.6 gcat h/ggua). The speciation of the iron phase (metallic (α-Fe), carbide (Fe5C2), oxide (Fe3O4), and super-paramagnetic) in spent catalysts is revealed by XRD and Mössbauer spectroscopy as a function of gases composition. At least 3 types of carbonaceous deposit were evidenced by TPO analysis. TEM observations showed that iron particles size is not markedly affected by the reaction and that carbon deposit mainly occurs in the vicinity of iron particles. When all the gases except methane (Guaiacol + H2 + CO + CO2 + H20) are simultaneously in the feed stream, the conditions are still sufficiently reducing to maintain the activity of the catalyst (66% of benzene and toluene carbon yield, 7.5 gcat h/ggua). The effects of support (silica or activated carbon-AC) and iron loading (5, 10, 15 wt% Fe/Si02) were also studied. 10wt% Fe/AC has a higher selectivity in phenol and cresols production than Fe/SiO2. Active sites and reaction mechanisms are discussed.
pA  
A01 01  1    @0 0926-3373
A03   1    @0 Appl. catal., B Environ.
A05       @2 129
A08 01  1  ENG  @1 Gas-phase hydrodeoxygenation of guaiacol over iron-based catalysts. Effect of gases composition, iron load and supports (silica and activated carbon)
A11 01  1    @1 OLCESE (R.)
A11 02  1    @1 BETTAHAR (M. M.)
A11 03  1    @1 MALAMAN (B.)
A11 04  1    @1 GHANBAJA (J.)
A11 05  1    @1 TIBAVIZCO (L.)
A11 06  1    @1 PETITJEAN (D.)
A11 07  1    @1 DUFOUR (A.)
A14 01      @1 LRGP, CNRS, Université de Lorraine, ENSIC, 1, Rue Grandville @2 Nancy @3 FRA @Z 1 aut. @Z 5 aut. @Z 6 aut. @Z 7 aut.
A14 02      @1 SRSMC, CNRS, Université de Lorraine, Faculté des Sciences, Bvd. des Aiguillettes @2 54506 Vandoeuvre-les-Nancy @3 FRA @Z 2 aut.
A14 03      @1 IJL, CNRS, Université de Lorraine, Faculté des Sciences, Bv. Des Aiguillettes @2 Vandoeuvre-les-Nancy @3 FRA @Z 3 aut. @Z 4 aut.
A20       @1 528-538
A21       @1 2013
A23 01      @0 ENG
A43 01      @1 INIST @2 18840B @5 354000506373060580
A44       @0 0000 @1 © 2013 INIST-CNRS. All rights reserved.
A45       @0 50 ref.
A47 01  1    @0 13-0120195
A60       @1 P
A61       @0 A
A64 01  1    @0 Applied catalysis. B, Environmental
A66 01      @0 GBR
C01 01    ENG  @0 Fe/Si02 is shown to be a selective catalyst for guaiacol hydrodeoxygenation (HDO). Guaiacol is used as a model compound to study the conversion of lignin pyrolysis vapours into aromatics (benzene, phenols). The effect of each individual gas present in a pyrolysis gas (H2, CO, CO2, H2O, CH4) on the selectivity of a 10wt% Fe/SiO2 catalyst is studied (673 K, atmospheric pressure, 50 mol% H2, 1/WHSV = 0.6 gcat h/ggua). The speciation of the iron phase (metallic (α-Fe), carbide (Fe5C2), oxide (Fe3O4), and super-paramagnetic) in spent catalysts is revealed by XRD and Mössbauer spectroscopy as a function of gases composition. At least 3 types of carbonaceous deposit were evidenced by TPO analysis. TEM observations showed that iron particles size is not markedly affected by the reaction and that carbon deposit mainly occurs in the vicinity of iron particles. When all the gases except methane (Guaiacol + H2 + CO + CO2 + H20) are simultaneously in the feed stream, the conditions are still sufficiently reducing to maintain the activity of the catalyst (66% of benzene and toluene carbon yield, 7.5 gcat h/ggua). The effects of support (silica or activated carbon-AC) and iron loading (5, 10, 15 wt% Fe/Si02) were also studied. 10wt% Fe/AC has a higher selectivity in phenol and cresols production than Fe/SiO2. Active sites and reaction mechanisms are discussed.
C02 01  X    @0 001C01A03
C02 02  X    @0 001C01I06
C03 01  X  FRE  @0 Phase gazeuse @5 01
C03 01  X  ENG  @0 Gas phase @5 01
C03 01  X  SPA  @0 Fase gaseosa @5 01
C03 02  X  FRE  @0 Guaiacol @2 NK @2 FR @5 02
C03 02  X  ENG  @0 Guaiacol @2 NK @2 FR @5 02
C03 02  X  SPA  @0 Guaiacol @2 NK @2 FR @5 02
C03 03  X  FRE  @0 Fer @2 NC @5 03
C03 03  X  ENG  @0 Iron @2 NC @5 03
C03 03  X  SPA  @0 Hierro @2 NC @5 03
C03 04  X  FRE  @0 Catalyseur @5 04
C03 04  X  ENG  @0 Catalyst @5 04
C03 04  X  SPA  @0 Catalizador @5 04
C03 05  X  FRE  @0 Gaz @5 05
C03 05  X  ENG  @0 Gases @5 05
C03 05  X  SPA  @0 Gas @5 05
C03 06  X  FRE  @0 Composition @5 06
C03 06  X  ENG  @0 Composition @5 06
C03 06  X  SPA  @0 Composicion @5 06
C03 07  X  FRE  @0 Silice @2 NK @2 FX @5 08
C03 07  X  ENG  @0 Silica @2 NK @2 FX @5 08
C03 07  X  SPA  @0 Sílice @2 NK @2 FX @5 08
C03 08  X  FRE  @0 Charbon actif @5 09
C03 08  X  ENG  @0 Activated carbon @5 09
C03 08  X  SPA  @0 Carbón activado @5 09
C03 09  X  FRE  @0 Lignine @5 10
C03 09  X  ENG  @0 Lignin @5 10
C03 09  X  SPA  @0 Lignina @5 10
C03 10  X  FRE  @0 Catalyse hétérogène @5 11
C03 10  X  ENG  @0 Heterogeneous catalysis @5 11
C03 10  X  SPA  @0 Catálisis heterogénea @5 11
C03 11  X  FRE  @0 Protection environnement @5 12
C03 11  X  ENG  @0 Environmental protection @5 12
C03 11  X  SPA  @0 Protección medio ambiente @5 12
C03 12  X  FRE  @0 Catalyseur sur support @5 15
C03 12  X  ENG  @0 Supported catalyst @5 15
C03 12  X  SPA  @0 Catalizador sobre soporte @5 15
C03 13  X  FRE  @0 SiO2 @4 INC @5 32
C07 01  X  FRE  @0 Métal transition @2 NC @5 13
C07 01  X  ENG  @0 Transition metal @2 NC @5 13
C07 01  X  SPA  @0 Metal transición @2 NC @5 13
C07 02  X  FRE  @0 Composé binaire @5 14
C07 02  X  ENG  @0 Binary compound @5 14
C07 02  X  SPA  @0 Compuesto binario @5 14
N21       @1 098

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0120195

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Gas-phase hydrodeoxygenation of guaiacol over iron-based catalysts. Effect of gases composition, iron load and supports (silica and activated carbon)</title>
<author>
<name sortKey="Olcese, R" sort="Olcese, R" uniqKey="Olcese R" first="R." last="Olcese">R. Olcese</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>LRGP, CNRS, Université de Lorraine, ENSIC, 1, Rue Grandville</s1>
<s2>Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Bettahar, M M" sort="Bettahar, M M" uniqKey="Bettahar M" first="M. M." last="Bettahar">M. M. Bettahar</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>SRSMC, CNRS, Université de Lorraine, Faculté des Sciences, Bvd. des Aiguillettes</s1>
<s2>54506 Vandoeuvre-les-Nancy</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Malaman, B" sort="Malaman, B" uniqKey="Malaman B" first="B." last="Malaman">B. Malaman</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>IJL, CNRS, Université de Lorraine, Faculté des Sciences, Bv. Des Aiguillettes</s1>
<s2>Vandoeuvre-les-Nancy</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Ghanbaja, J" sort="Ghanbaja, J" uniqKey="Ghanbaja J" first="J." last="Ghanbaja">J. Ghanbaja</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>IJL, CNRS, Université de Lorraine, Faculté des Sciences, Bv. Des Aiguillettes</s1>
<s2>Vandoeuvre-les-Nancy</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Tibavizco, L" sort="Tibavizco, L" uniqKey="Tibavizco L" first="L." last="Tibavizco">L. Tibavizco</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>LRGP, CNRS, Université de Lorraine, ENSIC, 1, Rue Grandville</s1>
<s2>Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Petitjean, D" sort="Petitjean, D" uniqKey="Petitjean D" first="D." last="Petitjean">D. Petitjean</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>LRGP, CNRS, Université de Lorraine, ENSIC, 1, Rue Grandville</s1>
<s2>Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Dufour, A" sort="Dufour, A" uniqKey="Dufour A" first="A." last="Dufour">A. Dufour</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>LRGP, CNRS, Université de Lorraine, ENSIC, 1, Rue Grandville</s1>
<s2>Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">13-0120195</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0120195 INIST</idno>
<idno type="RBID">Pascal:13-0120195</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000072</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000A37</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Gas-phase hydrodeoxygenation of guaiacol over iron-based catalysts. Effect of gases composition, iron load and supports (silica and activated carbon)</title>
<author>
<name sortKey="Olcese, R" sort="Olcese, R" uniqKey="Olcese R" first="R." last="Olcese">R. Olcese</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>LRGP, CNRS, Université de Lorraine, ENSIC, 1, Rue Grandville</s1>
<s2>Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Bettahar, M M" sort="Bettahar, M M" uniqKey="Bettahar M" first="M. M." last="Bettahar">M. M. Bettahar</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>SRSMC, CNRS, Université de Lorraine, Faculté des Sciences, Bvd. des Aiguillettes</s1>
<s2>54506 Vandoeuvre-les-Nancy</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Malaman, B" sort="Malaman, B" uniqKey="Malaman B" first="B." last="Malaman">B. Malaman</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>IJL, CNRS, Université de Lorraine, Faculté des Sciences, Bv. Des Aiguillettes</s1>
<s2>Vandoeuvre-les-Nancy</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Ghanbaja, J" sort="Ghanbaja, J" uniqKey="Ghanbaja J" first="J." last="Ghanbaja">J. Ghanbaja</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>IJL, CNRS, Université de Lorraine, Faculté des Sciences, Bv. Des Aiguillettes</s1>
<s2>Vandoeuvre-les-Nancy</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Tibavizco, L" sort="Tibavizco, L" uniqKey="Tibavizco L" first="L." last="Tibavizco">L. Tibavizco</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>LRGP, CNRS, Université de Lorraine, ENSIC, 1, Rue Grandville</s1>
<s2>Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Petitjean, D" sort="Petitjean, D" uniqKey="Petitjean D" first="D." last="Petitjean">D. Petitjean</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>LRGP, CNRS, Université de Lorraine, ENSIC, 1, Rue Grandville</s1>
<s2>Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Dufour, A" sort="Dufour, A" uniqKey="Dufour A" first="A." last="Dufour">A. Dufour</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>LRGP, CNRS, Université de Lorraine, ENSIC, 1, Rue Grandville</s1>
<s2>Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Applied catalysis. B, Environmental</title>
<title level="j" type="abbreviated">Appl. catal., B Environ.</title>
<idno type="ISSN">0926-3373</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Applied catalysis. B, Environmental</title>
<title level="j" type="abbreviated">Appl. catal., B Environ.</title>
<idno type="ISSN">0926-3373</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Activated carbon</term>
<term>Catalyst</term>
<term>Composition</term>
<term>Environmental protection</term>
<term>Gas phase</term>
<term>Gases</term>
<term>Guaiacol</term>
<term>Heterogeneous catalysis</term>
<term>Iron</term>
<term>Lignin</term>
<term>Silica</term>
<term>Supported catalyst</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Phase gazeuse</term>
<term>Guaiacol</term>
<term>Fer</term>
<term>Catalyseur</term>
<term>Gaz</term>
<term>Composition</term>
<term>Silice</term>
<term>Charbon actif</term>
<term>Lignine</term>
<term>Catalyse hétérogène</term>
<term>Protection environnement</term>
<term>Catalyseur sur support</term>
<term>SiO2</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Fer</term>
<term>Gaz</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Fe/Si0
<sub>2</sub>
is shown to be a selective catalyst for guaiacol hydrodeoxygenation (HDO). Guaiacol is used as a model compound to study the conversion of lignin pyrolysis vapours into aromatics (benzene, phenols). The effect of each individual gas present in a pyrolysis gas (H
<sub>2</sub>
, CO, CO
<sub>2</sub>
, H
<sub>2</sub>
O, CH
<sub>4</sub>
) on the selectivity of a 10wt% Fe/SiO
<sub>2</sub>
catalyst is studied (673 K, atmospheric pressure, 50 mol% H
<sub>2</sub>
, 1/WHSV = 0.6 g
<sub>cat</sub>
h/g
<sub>gua</sub>
). The speciation of the iron phase (metallic (α-Fe), carbide (Fe
<sub>5</sub>
C
<sub>2</sub>
), oxide (Fe
<sub>3</sub>
O
<sub>4</sub>
), and super-paramagnetic) in spent catalysts is revealed by XRD and Mössbauer spectroscopy as a function of gases composition. At least 3 types of carbonaceous deposit were evidenced by TPO analysis. TEM observations showed that iron particles size is not markedly affected by the reaction and that carbon deposit mainly occurs in the vicinity of iron particles. When all the gases except methane (Guaiacol + H
<sub>2</sub>
+ CO + CO
<sub>2</sub>
+ H
<sub>2</sub>
0) are simultaneously in the feed stream, the conditions are still sufficiently reducing to maintain the activity of the catalyst (66% of benzene and toluene carbon yield, 7.5 g
<sub>cat</sub>
h/g
<sub>gua</sub>
). The effects of support (silica or activated carbon-AC) and iron loading (5, 10, 15 wt% Fe/Si0
<sub>2</sub>
) were also studied. 10wt% Fe/AC has a higher selectivity in phenol and cresols production than Fe/SiO
<sub>2</sub>
. Active sites and reaction mechanisms are discussed.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0926-3373</s0>
</fA01>
<fA03 i2="1">
<s0>Appl. catal., B Environ.</s0>
</fA03>
<fA05>
<s2>129</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Gas-phase hydrodeoxygenation of guaiacol over iron-based catalysts. Effect of gases composition, iron load and supports (silica and activated carbon)</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>OLCESE (R.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BETTAHAR (M. M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MALAMAN (B.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GHANBAJA (J.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>TIBAVIZCO (L.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>PETITJEAN (D.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>DUFOUR (A.)</s1>
</fA11>
<fA14 i1="01">
<s1>LRGP, CNRS, Université de Lorraine, ENSIC, 1, Rue Grandville</s1>
<s2>Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>SRSMC, CNRS, Université de Lorraine, Faculté des Sciences, Bvd. des Aiguillettes</s1>
<s2>54506 Vandoeuvre-les-Nancy</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>IJL, CNRS, Université de Lorraine, Faculté des Sciences, Bv. Des Aiguillettes</s1>
<s2>Vandoeuvre-les-Nancy</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>528-538</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18840B</s2>
<s5>354000506373060580</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>50 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0120195</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Applied catalysis. B, Environmental</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Fe/Si0
<sub>2</sub>
is shown to be a selective catalyst for guaiacol hydrodeoxygenation (HDO). Guaiacol is used as a model compound to study the conversion of lignin pyrolysis vapours into aromatics (benzene, phenols). The effect of each individual gas present in a pyrolysis gas (H
<sub>2</sub>
, CO, CO
<sub>2</sub>
, H
<sub>2</sub>
O, CH
<sub>4</sub>
) on the selectivity of a 10wt% Fe/SiO
<sub>2</sub>
catalyst is studied (673 K, atmospheric pressure, 50 mol% H
<sub>2</sub>
, 1/WHSV = 0.6 g
<sub>cat</sub>
h/g
<sub>gua</sub>
). The speciation of the iron phase (metallic (α-Fe), carbide (Fe
<sub>5</sub>
C
<sub>2</sub>
), oxide (Fe
<sub>3</sub>
O
<sub>4</sub>
), and super-paramagnetic) in spent catalysts is revealed by XRD and Mössbauer spectroscopy as a function of gases composition. At least 3 types of carbonaceous deposit were evidenced by TPO analysis. TEM observations showed that iron particles size is not markedly affected by the reaction and that carbon deposit mainly occurs in the vicinity of iron particles. When all the gases except methane (Guaiacol + H
<sub>2</sub>
+ CO + CO
<sub>2</sub>
+ H
<sub>2</sub>
0) are simultaneously in the feed stream, the conditions are still sufficiently reducing to maintain the activity of the catalyst (66% of benzene and toluene carbon yield, 7.5 g
<sub>cat</sub>
h/g
<sub>gua</sub>
). The effects of support (silica or activated carbon-AC) and iron loading (5, 10, 15 wt% Fe/Si0
<sub>2</sub>
) were also studied. 10wt% Fe/AC has a higher selectivity in phenol and cresols production than Fe/SiO
<sub>2</sub>
. Active sites and reaction mechanisms are discussed.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001C01A03</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001C01I06</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Phase gazeuse</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Gas phase</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Fase gaseosa</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Guaiacol</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Guaiacol</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Guaiacol</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Fer</s0>
<s2>NC</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Iron</s0>
<s2>NC</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Hierro</s0>
<s2>NC</s2>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Catalyseur</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Catalyst</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Catalizador</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Gaz</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Gases</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Gas</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Composition</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Composition</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Composicion</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Silice</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Silica</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Sílice</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Charbon actif</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Activated carbon</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Carbón activado</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Lignine</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Lignin</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Lignina</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Catalyse hétérogène</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Heterogeneous catalysis</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Catálisis heterogénea</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Protection environnement</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Environmental protection</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Protección medio ambiente</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Catalyseur sur support</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Supported catalyst</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Catalizador sobre soporte</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>SiO2</s0>
<s4>INC</s4>
<s5>32</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Métal transition</s0>
<s2>NC</s2>
<s5>13</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Transition metal</s0>
<s2>NC</s2>
<s5>13</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Metal transición</s0>
<s2>NC</s2>
<s5>13</s5>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Composé binaire</s0>
<s5>14</s5>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Binary compound</s0>
<s5>14</s5>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Compuesto binario</s0>
<s5>14</s5>
</fC07>
<fN21>
<s1>098</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A37 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000A37 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:13-0120195
   |texte=   Gas-phase hydrodeoxygenation of guaiacol over iron-based catalysts. Effect of gases composition, iron load and supports (silica and activated carbon)
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024