Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Prediction of a particle-laden turbulent channel flow: Examination of two classes of stochastic dispersion models

Identifieur interne : 000027 ( PascalFrancis/Corpus ); précédent : 000026; suivant : 000028

Prediction of a particle-laden turbulent channel flow: Examination of two classes of stochastic dispersion models

Auteurs : A. Taniere ; B. Arcen

Source :

RBID : Pascal:14-0090625

Descripteurs français

English descriptors

Abstract

Nowadays, two families of stochastic models are mainly used to predict the dispersion of inertial particles in inhomogeneous turbulent flows. This first one is named "normalized model" and the second one "Generalized Langevin Model (GLM)". Nevertheless, the main differences between the normalized and GLM models have not been thoroughly investigated. Is there a model which is more suitable to predict the particle dispersion in inhomogeneous turbulence? We propose in the present study to clarify this point by computing a particle-laden turbulent channel flow using a GLM-type model, and also a normalized-type model. Particle statistics (such as concentration, mean and rms particle velocity, fluid-particle velocity covariances) will be provided and compared to Direct Numerical Simulation (DNS) data in order to assess the performance of both dispersion models. It will be shown that the normalized dispersion model studied can predict correctly the effect of particle inertia on some dispersion statistics, but not on all. For instance, it was found that the prediction of the particle kinetic shear stress and some components of the fluid-particle covariance is not physically acceptable.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0301-9322
A02 01      @0 IJMFBP
A03   1    @0 Int. j. multiph. flow
A05       @2 60
A08 01  1  ENG  @1 Prediction of a particle-laden turbulent channel flow: Examination of two classes of stochastic dispersion models
A11 01  1    @1 TANIERE (A.)
A11 02  1    @1 ARCEN (B.)
A14 01      @1 Université de Lorraine, LEMTA, UMR 7563 @2 Vandoeuvre-lès-Nancy 54500 @3 FRA @Z 1 aut.
A14 02      @1 CNRS, LEMTA, UMR 7563 @2 Vandoeuvre-lès-Nancy 54500 @3 FRA @Z 1 aut.
A14 03      @1 Université de Lorraine, LRGP, UMR 7274 @2 Nancy 54501 @3 FRA @Z 2 aut.
A14 04      @1 CNRS, LRGP, UMR 7274 @2 Nancy 54501 @3 FRA @Z 2 aut.
A20       @1 1-10
A21       @1 2014
A23 01      @0 ENG
A43 01      @1 INIST @2 16459 @5 354000506141720010
A44       @0 0000 @1 © 2014 INIST-CNRS. All rights reserved.
A45       @0 1/4 p.
A47 01  1    @0 14-0090625
A60       @1 P
A61       @0 A
A64 01  1    @0 International journal of multiphase flow
A66 01      @0 GBR
C01 01    ENG  @0 Nowadays, two families of stochastic models are mainly used to predict the dispersion of inertial particles in inhomogeneous turbulent flows. This first one is named "normalized model" and the second one "Generalized Langevin Model (GLM)". Nevertheless, the main differences between the normalized and GLM models have not been thoroughly investigated. Is there a model which is more suitable to predict the particle dispersion in inhomogeneous turbulence? We propose in the present study to clarify this point by computing a particle-laden turbulent channel flow using a GLM-type model, and also a normalized-type model. Particle statistics (such as concentration, mean and rms particle velocity, fluid-particle velocity covariances) will be provided and compared to Direct Numerical Simulation (DNS) data in order to assess the performance of both dispersion models. It will be shown that the normalized dispersion model studied can predict correctly the effect of particle inertia on some dispersion statistics, but not on all. For instance, it was found that the prediction of the particle kinetic shear stress and some components of the fluid-particle covariance is not physically acceptable.
C02 01  3    @0 001B40G55K
C03 01  3  FRE  @0 Ecoulement diphasique @5 02
C03 01  3  ENG  @0 Two-phase flow @5 02
C03 02  3  FRE  @0 Ecoulement turbulent @5 03
C03 02  3  ENG  @0 Turbulent flow @5 03
C03 03  3  FRE  @0 Ecoulement conduite @5 04
C03 03  3  ENG  @0 Pipe flow @5 04
C03 04  X  FRE  @0 Modèle stochastique @5 08
C03 04  X  ENG  @0 Stochastic model @5 08
C03 04  X  SPA  @0 Modelo estocástico @5 08
C03 05  X  FRE  @0 Suspension particule @5 09
C03 05  X  ENG  @0 Particle suspension @5 09
C03 05  X  SPA  @0 Suspensión partícula @5 09
C03 06  3  FRE  @0 Modélisation @5 15
C03 06  3  ENG  @0 Modelling @5 15
C03 07  3  FRE  @0 Simulation numérique @5 16
C03 07  3  ENG  @0 Digital simulation @5 16
C03 08  X  FRE  @0 Dispersion hydrodynamique @5 29
C03 08  X  ENG  @0 Hydrodynamic dispersion @5 29
C03 08  X  SPA  @0 Dispersión hidrodinámica @5 29
C03 09  3  FRE  @0 4755K @4 INC @5 56
N21       @1 118

Format Inist (serveur)

NO : PASCAL 14-0090625 INIST
ET : Prediction of a particle-laden turbulent channel flow: Examination of two classes of stochastic dispersion models
AU : TANIERE (A.); ARCEN (B.)
AF : Université de Lorraine, LEMTA, UMR 7563/Vandoeuvre-lès-Nancy 54500/France (1 aut.); CNRS, LEMTA, UMR 7563/Vandoeuvre-lès-Nancy 54500/France (1 aut.); Université de Lorraine, LRGP, UMR 7274/Nancy 54501/France (2 aut.); CNRS, LRGP, UMR 7274/Nancy 54501/France (2 aut.)
DT : Publication en série; Niveau analytique
SO : International journal of multiphase flow; ISSN 0301-9322; Coden IJMFBP; Royaume-Uni; Da. 2014; Vol. 60; Pp. 1-10; Bibl. 1/4 p.
LA : Anglais
EA : Nowadays, two families of stochastic models are mainly used to predict the dispersion of inertial particles in inhomogeneous turbulent flows. This first one is named "normalized model" and the second one "Generalized Langevin Model (GLM)". Nevertheless, the main differences between the normalized and GLM models have not been thoroughly investigated. Is there a model which is more suitable to predict the particle dispersion in inhomogeneous turbulence? We propose in the present study to clarify this point by computing a particle-laden turbulent channel flow using a GLM-type model, and also a normalized-type model. Particle statistics (such as concentration, mean and rms particle velocity, fluid-particle velocity covariances) will be provided and compared to Direct Numerical Simulation (DNS) data in order to assess the performance of both dispersion models. It will be shown that the normalized dispersion model studied can predict correctly the effect of particle inertia on some dispersion statistics, but not on all. For instance, it was found that the prediction of the particle kinetic shear stress and some components of the fluid-particle covariance is not physically acceptable.
CC : 001B40G55K
FD : Ecoulement diphasique; Ecoulement turbulent; Ecoulement conduite; Modèle stochastique; Suspension particule; Modélisation; Simulation numérique; Dispersion hydrodynamique; 4755K
ED : Two-phase flow; Turbulent flow; Pipe flow; Stochastic model; Particle suspension; Modelling; Digital simulation; Hydrodynamic dispersion
SD : Modelo estocástico; Suspensión partícula; Dispersión hidrodinámica
LO : INIST-16459.354000506141720010
ID : 14-0090625

Links to Exploration step

Pascal:14-0090625

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Prediction of a particle-laden turbulent channel flow: Examination of two classes of stochastic dispersion models</title>
<author>
<name sortKey="Taniere, A" sort="Taniere, A" uniqKey="Taniere A" first="A." last="Taniere">A. Taniere</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Université de Lorraine, LEMTA, UMR 7563</s1>
<s2>Vandoeuvre-lès-Nancy 54500</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>CNRS, LEMTA, UMR 7563</s1>
<s2>Vandoeuvre-lès-Nancy 54500</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Arcen, B" sort="Arcen, B" uniqKey="Arcen B" first="B." last="Arcen">B. Arcen</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Université de Lorraine, LRGP, UMR 7274</s1>
<s2>Nancy 54501</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="04">
<s1>CNRS, LRGP, UMR 7274</s1>
<s2>Nancy 54501</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">14-0090625</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0090625 INIST</idno>
<idno type="RBID">Pascal:14-0090625</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000027</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Prediction of a particle-laden turbulent channel flow: Examination of two classes of stochastic dispersion models</title>
<author>
<name sortKey="Taniere, A" sort="Taniere, A" uniqKey="Taniere A" first="A." last="Taniere">A. Taniere</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Université de Lorraine, LEMTA, UMR 7563</s1>
<s2>Vandoeuvre-lès-Nancy 54500</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>CNRS, LEMTA, UMR 7563</s1>
<s2>Vandoeuvre-lès-Nancy 54500</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Arcen, B" sort="Arcen, B" uniqKey="Arcen B" first="B." last="Arcen">B. Arcen</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Université de Lorraine, LRGP, UMR 7274</s1>
<s2>Nancy 54501</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="04">
<s1>CNRS, LRGP, UMR 7274</s1>
<s2>Nancy 54501</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">International journal of multiphase flow</title>
<title level="j" type="abbreviated">Int. j. multiph. flow</title>
<idno type="ISSN">0301-9322</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">International journal of multiphase flow</title>
<title level="j" type="abbreviated">Int. j. multiph. flow</title>
<idno type="ISSN">0301-9322</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Digital simulation</term>
<term>Hydrodynamic dispersion</term>
<term>Modelling</term>
<term>Particle suspension</term>
<term>Pipe flow</term>
<term>Stochastic model</term>
<term>Turbulent flow</term>
<term>Two-phase flow</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Ecoulement diphasique</term>
<term>Ecoulement turbulent</term>
<term>Ecoulement conduite</term>
<term>Modèle stochastique</term>
<term>Suspension particule</term>
<term>Modélisation</term>
<term>Simulation numérique</term>
<term>Dispersion hydrodynamique</term>
<term>4755K</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Nowadays, two families of stochastic models are mainly used to predict the dispersion of inertial particles in inhomogeneous turbulent flows. This first one is named "normalized model" and the second one "Generalized Langevin Model (GLM)". Nevertheless, the main differences between the normalized and GLM models have not been thoroughly investigated. Is there a model which is more suitable to predict the particle dispersion in inhomogeneous turbulence? We propose in the present study to clarify this point by computing a particle-laden turbulent channel flow using a GLM-type model, and also a normalized-type model. Particle statistics (such as concentration, mean and rms particle velocity, fluid-particle velocity covariances) will be provided and compared to Direct Numerical Simulation (DNS) data in order to assess the performance of both dispersion models. It will be shown that the normalized dispersion model studied can predict correctly the effect of particle inertia on some dispersion statistics, but not on all. For instance, it was found that the prediction of the particle kinetic shear stress and some components of the fluid-particle covariance is not physically acceptable.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0301-9322</s0>
</fA01>
<fA02 i1="01">
<s0>IJMFBP</s0>
</fA02>
<fA03 i2="1">
<s0>Int. j. multiph. flow</s0>
</fA03>
<fA05>
<s2>60</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Prediction of a particle-laden turbulent channel flow: Examination of two classes of stochastic dispersion models</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>TANIERE (A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ARCEN (B.)</s1>
</fA11>
<fA14 i1="01">
<s1>Université de Lorraine, LEMTA, UMR 7563</s1>
<s2>Vandoeuvre-lès-Nancy 54500</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>CNRS, LEMTA, UMR 7563</s1>
<s2>Vandoeuvre-lès-Nancy 54500</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Université de Lorraine, LRGP, UMR 7274</s1>
<s2>Nancy 54501</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>CNRS, LRGP, UMR 7274</s1>
<s2>Nancy 54501</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>1-10</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>16459</s2>
<s5>354000506141720010</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0090625</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>International journal of multiphase flow</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Nowadays, two families of stochastic models are mainly used to predict the dispersion of inertial particles in inhomogeneous turbulent flows. This first one is named "normalized model" and the second one "Generalized Langevin Model (GLM)". Nevertheless, the main differences between the normalized and GLM models have not been thoroughly investigated. Is there a model which is more suitable to predict the particle dispersion in inhomogeneous turbulence? We propose in the present study to clarify this point by computing a particle-laden turbulent channel flow using a GLM-type model, and also a normalized-type model. Particle statistics (such as concentration, mean and rms particle velocity, fluid-particle velocity covariances) will be provided and compared to Direct Numerical Simulation (DNS) data in order to assess the performance of both dispersion models. It will be shown that the normalized dispersion model studied can predict correctly the effect of particle inertia on some dispersion statistics, but not on all. For instance, it was found that the prediction of the particle kinetic shear stress and some components of the fluid-particle covariance is not physically acceptable.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B40G55K</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Ecoulement diphasique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Two-phase flow</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Ecoulement turbulent</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Turbulent flow</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Ecoulement conduite</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Pipe flow</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Modèle stochastique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Stochastic model</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Modelo estocástico</s0>
<s5>08</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Suspension particule</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Particle suspension</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Suspensión partícula</s0>
<s5>09</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Modélisation</s0>
<s5>15</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Modelling</s0>
<s5>15</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Simulation numérique</s0>
<s5>16</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Digital simulation</s0>
<s5>16</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Dispersion hydrodynamique</s0>
<s5>29</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Hydrodynamic dispersion</s0>
<s5>29</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Dispersión hidrodinámica</s0>
<s5>29</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>4755K</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fN21>
<s1>118</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 14-0090625 INIST</NO>
<ET>Prediction of a particle-laden turbulent channel flow: Examination of two classes of stochastic dispersion models</ET>
<AU>TANIERE (A.); ARCEN (B.)</AU>
<AF>Université de Lorraine, LEMTA, UMR 7563/Vandoeuvre-lès-Nancy 54500/France (1 aut.); CNRS, LEMTA, UMR 7563/Vandoeuvre-lès-Nancy 54500/France (1 aut.); Université de Lorraine, LRGP, UMR 7274/Nancy 54501/France (2 aut.); CNRS, LRGP, UMR 7274/Nancy 54501/France (2 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>International journal of multiphase flow; ISSN 0301-9322; Coden IJMFBP; Royaume-Uni; Da. 2014; Vol. 60; Pp. 1-10; Bibl. 1/4 p.</SO>
<LA>Anglais</LA>
<EA>Nowadays, two families of stochastic models are mainly used to predict the dispersion of inertial particles in inhomogeneous turbulent flows. This first one is named "normalized model" and the second one "Generalized Langevin Model (GLM)". Nevertheless, the main differences between the normalized and GLM models have not been thoroughly investigated. Is there a model which is more suitable to predict the particle dispersion in inhomogeneous turbulence? We propose in the present study to clarify this point by computing a particle-laden turbulent channel flow using a GLM-type model, and also a normalized-type model. Particle statistics (such as concentration, mean and rms particle velocity, fluid-particle velocity covariances) will be provided and compared to Direct Numerical Simulation (DNS) data in order to assess the performance of both dispersion models. It will be shown that the normalized dispersion model studied can predict correctly the effect of particle inertia on some dispersion statistics, but not on all. For instance, it was found that the prediction of the particle kinetic shear stress and some components of the fluid-particle covariance is not physically acceptable.</EA>
<CC>001B40G55K</CC>
<FD>Ecoulement diphasique; Ecoulement turbulent; Ecoulement conduite; Modèle stochastique; Suspension particule; Modélisation; Simulation numérique; Dispersion hydrodynamique; 4755K</FD>
<ED>Two-phase flow; Turbulent flow; Pipe flow; Stochastic model; Particle suspension; Modelling; Digital simulation; Hydrodynamic dispersion</ED>
<SD>Modelo estocástico; Suspensión partícula; Dispersión hidrodinámica</SD>
<LO>INIST-16459.354000506141720010</LO>
<ID>14-0090625</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000027 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000027 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:14-0090625
   |texte=   Prediction of a particle-laden turbulent channel flow: Examination of two classes of stochastic dispersion models
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024