Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Utilizing the O-antigen lipopolysaccharide biosynthesis pathway in Escherichia coli to interrogate the substrate specificities of exogenous glycosyltransferase genes in a combinatorial approach

Identifieur interne : 000D76 ( Main/Curation ); précédent : 000D75; suivant : 000D77

Utilizing the O-antigen lipopolysaccharide biosynthesis pathway in Escherichia coli to interrogate the substrate specificities of exogenous glycosyltransferase genes in a combinatorial approach

Auteurs : Eric B. Johansen [États-Unis] ; Francis C. Szoka [États-Unis] ; Anthony Zaleski [États-Unis] ; Michael A. Apicella [États-Unis] ; Bradford W. Gibson [États-Unis]

Source :

RBID : ISTEX:79EA3BCD94FF6997A11CEE9DCA0E20B089DE3046

Descripteurs français

English descriptors

Abstract

In previous work, our laboratory generated novel chimeric lipopolysaccharides (LPS) in Escherichia coli transformed with a plasmid containing exogenous lipooligosaccharide synthesis genes (lsg) from Haemophilus influenzae. Analysis of these novel oligosaccharide-LPS chimeras allowed characterization of the carbohydrate structures generated by several putative glycosyltransferase genes within the lsg locus. Here, we adapted this strategy to construct a modular approach to study the synthetic properties of individual glycosyltransferases expressed alone and in combinations. To this end, a set of expression vectors containing one to four putative glycosyltransferase genes from the lsg locus, lsgC-F, were transformed into E. coli K12 (XL-1) which is defective in LPS O-antigen biosynthesis. This strategy relied on the inclusion of the H. influenzae gene product lsgG in every plasmid construct, which partially rescues the E. coli LPS biosynthesis defect by priming uridine diphosphate-undecaprenyl in the WecA-dependent O-antigen synthetic pathway with N-acetyl-glucosamine (GlcNAc). This GlcNAc-undecaprenyl then served as an acceptor substrate for further carbohydrate extension by transformed glycosyltransferases. The resultant LPS-linked chimeric glycans were isolated from their E. coli constructs and characterized by mass spectrometry, methylation analysis and enzyme-linked immunosorbent assays. These structural data allowed the specificity of various glycosyltransferases to be unambiguously assigned to individual genes. LsgF was found to transfer a galactose (Gal) to terminal GlcNAc. LsgE was found to transfer GlcNAc to Gal-GlcNAc, and both LsgF and LsgD were found to transfer Gal to GlcNAc-Gal-GlcNAc but with differing linkage specificities. This method can be generalized and readily adapted to study the substrate specificity of other putative or uncharacterized glycosyltransferases.

Url:
DOI: 10.1093/glycob/cwq033

Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:79EA3BCD94FF6997A11CEE9DCA0E20B089DE3046

Curation

No country items

Bradford W. Gibson
<affiliation>
<wicri:noCountry code="syntax">???</wicri:noCountry>
</affiliation>
<affiliation></affiliation>

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Utilizing the O-antigen lipopolysaccharide biosynthesis pathway in Escherichia coli to interrogate the substrate specificities of exogenous glycosyltransferase genes in a combinatorial approach</title>
<author>
<name sortKey="Johansen, Eric B" sort="Johansen, Eric B" uniqKey="Johansen E" first="Eric B." last="Johansen">Eric B. Johansen</name>
</author>
<author>
<name sortKey="Szoka, Francis C" sort="Szoka, Francis C" uniqKey="Szoka F" first="Francis C." last="Szoka">Francis C. Szoka</name>
</author>
<author>
<name sortKey="Zaleski, Anthony" sort="Zaleski, Anthony" uniqKey="Zaleski A" first="Anthony" last="Zaleski">Anthony Zaleski</name>
</author>
<author>
<name sortKey="Apicella, Michael A" sort="Apicella, Michael A" uniqKey="Apicella M" first="Michael A." last="Apicella">Michael A. Apicella</name>
</author>
<author>
<name sortKey="Gibson, Bradford W" sort="Gibson, Bradford W" uniqKey="Gibson B" first="Bradford W." last="Gibson">Bradford W. Gibson</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:79EA3BCD94FF6997A11CEE9DCA0E20B089DE3046</idno>
<date when="2010" year="2010">2010</date>
<idno type="doi">10.1093/glycob/cwq033</idno>
<idno type="url">https://api.istex.fr/document/79EA3BCD94FF6997A11CEE9DCA0E20B089DE3046/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000301</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000301</idno>
<idno type="wicri:Area/Istex/Curation">000301</idno>
<idno type="wicri:Area/Istex/Checkpoint">000100</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000100</idno>
<idno type="wicri:doubleKey">0959-6658:2010:Johansen E:utilizing:the:o</idno>
<idno type="wicri:source">PMC</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2900885</idno>
<idno type="RBID">PMC:2900885</idno>
<idno type="wicri:Area/Pmc/Corpus">000126</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000126</idno>
<idno type="wicri:Area/Pmc/Curation">000126</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">000126</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000088</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Checkpoint">000088</idno>
<idno type="wicri:source">PubMed</idno>
<idno type="wicri:Area/PubMed/Corpus">000111</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000111</idno>
<idno type="wicri:Area/PubMed/Curation">000111</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000111</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000111</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000111</idno>
<idno type="wicri:Area/Ncbi/Merge">000167</idno>
<idno type="wicri:Area/Ncbi/Curation">000167</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">000167</idno>
<idno type="wicri:doubleKey">0959-6658:2010:Johansen E:utilizing:the:o</idno>
<idno type="wicri:Area/Main/Merge">000F51</idno>
<idno type="wicri:Area/Main/Curation">000D76</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Utilizing the O-antigen lipopolysaccharide biosynthesis pathway in Escherichia coli to interrogate the substrate specificities of exogenous glycosyltransferase genes in a combinatorial approach</title>
<author>
<name sortKey="Johansen, Eric B" sort="Johansen, Eric B" uniqKey="Johansen E" first="Eric B." last="Johansen">Eric B. Johansen</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmaceutical Chemistry and Pharmaceutical Sciences, University of California, San Francisco, CA 94143</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Szoka, Francis C" sort="Szoka, Francis C" uniqKey="Szoka F" first="Francis C." last="Szoka">Francis C. Szoka</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmaceutical Chemistry and Pharmaceutical Sciences, University of California, San Francisco, CA 94143</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zaleski, Anthony" sort="Zaleski, Anthony" uniqKey="Zaleski A" first="Anthony" last="Zaleski">Anthony Zaleski</name>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, University of Iowa, Iowa City, IA 52242</wicri:regionArea>
<placeName>
<region type="state">Iowa</region>
<settlement type="city">Iowa City</settlement>
</placeName>
<orgName type="university">Université de l'Iowa</orgName>
</affiliation>
</author>
<author>
<name sortKey="Apicella, Michael A" sort="Apicella, Michael A" uniqKey="Apicella M" first="Michael A." last="Apicella">Michael A. Apicella</name>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, University of Iowa, Iowa City, IA 52242</wicri:regionArea>
<placeName>
<region type="state">Iowa</region>
<settlement type="city">Iowa City</settlement>
</placeName>
<orgName type="university">Université de l'Iowa</orgName>
</affiliation>
</author>
<author>
<name sortKey="Gibson, Bradford W" sort="Gibson, Bradford W" uniqKey="Gibson B" first="Bradford W." last="Gibson">Bradford W. Gibson</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Buck Institute for Age Research, 8001 Redwood Blvd., Novato, CA 94945</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
<affiliation></affiliation>
<affiliation>
<wicri:noCountry code="syntax">???</wicri:noCountry>
</affiliation>
<affiliation></affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Glycobiology</title>
<title level="j" type="abbrev">Glycobiology</title>
<idno type="ISSN">0959-6658</idno>
<idno type="eISSN">1460-2423</idno>
<imprint>
<publisher>Oxford University Press</publisher>
<date type="published" when="2010-06">2010-06</date>
<biblScope unit="volume">20</biblScope>
<biblScope unit="issue">6</biblScope>
<biblScope unit="page" from="763">763</biblScope>
<biblScope unit="page" to="774">774</biblScope>
</imprint>
<idno type="ISSN">0959-6658</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0959-6658</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbohydrate Conformation</term>
<term>Carbohydrate Sequence</term>
<term>Enzyme-Linked Immunosorbent Assay</term>
<term>Escherichia coli (metabolism)</term>
<term>Genetic Vectors (genetics)</term>
<term>Glycosyltransferases (genetics)</term>
<term>Glycosyltransferases (metabolism)</term>
<term>Haemophilus influenzae (enzymology)</term>
<term>Haemophilus influenzae (genetics)</term>
<term>O Antigens (biosynthesis)</term>
<term>O Antigens (chemistry)</term>
<term>O Antigens (genetics)</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Antigènes O ()</term>
<term>Antigènes O (biosynthèse)</term>
<term>Antigènes O (génétique)</term>
<term>Conformation des glucides</term>
<term>Escherichia coli (métabolisme)</term>
<term>Glycosyltransferase (génétique)</term>
<term>Glycosyltransferase (métabolisme)</term>
<term>Haemophilus influenzae (enzymologie)</term>
<term>Haemophilus influenzae (génétique)</term>
<term>Spécificité du substrat</term>
<term>Séquence glucidique</term>
<term>Test ELISA</term>
<term>Vecteurs génétiques (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>O Antigens</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>O Antigens</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glycosyltransferases</term>
<term>O Antigens</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Antigènes O</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Haemophilus influenzae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Haemophilus influenzae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Genetic Vectors</term>
<term>Haemophilus influenzae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Antigènes O</term>
<term>Glycosyltransferase</term>
<term>Haemophilus influenzae</term>
<term>Vecteurs génétiques</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Escherichia coli</term>
<term>Glycosyltransferases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Escherichia coli</term>
<term>Glycosyltransferase</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Carbohydrate Conformation</term>
<term>Carbohydrate Sequence</term>
<term>Enzyme-Linked Immunosorbent Assay</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Antigènes O</term>
<term>Conformation des glucides</term>
<term>Spécificité du substrat</term>
<term>Séquence glucidique</term>
<term>Test ELISA</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">In previous work, our laboratory generated novel chimeric lipopolysaccharides (LPS) in Escherichia coli transformed with a plasmid containing exogenous lipooligosaccharide synthesis genes (lsg) from Haemophilus influenzae. Analysis of these novel oligosaccharide-LPS chimeras allowed characterization of the carbohydrate structures generated by several putative glycosyltransferase genes within the lsg locus. Here, we adapted this strategy to construct a modular approach to study the synthetic properties of individual glycosyltransferases expressed alone and in combinations. To this end, a set of expression vectors containing one to four putative glycosyltransferase genes from the lsg locus, lsgC-F, were transformed into E. coli K12 (XL-1) which is defective in LPS O-antigen biosynthesis. This strategy relied on the inclusion of the H. influenzae gene product lsgG in every plasmid construct, which partially rescues the E. coli LPS biosynthesis defect by priming uridine diphosphate-undecaprenyl in the WecA-dependent O-antigen synthetic pathway with N-acetyl-glucosamine (GlcNAc). This GlcNAc-undecaprenyl then served as an acceptor substrate for further carbohydrate extension by transformed glycosyltransferases. The resultant LPS-linked chimeric glycans were isolated from their E. coli constructs and characterized by mass spectrometry, methylation analysis and enzyme-linked immunosorbent assays. These structural data allowed the specificity of various glycosyltransferases to be unambiguously assigned to individual genes. LsgF was found to transfer a galactose (Gal) to terminal GlcNAc. LsgE was found to transfer GlcNAc to Gal-GlcNAc, and both LsgF and LsgD were found to transfer Gal to GlcNAc-Gal-GlcNAc but with differing linkage specificities. This method can be generalized and readily adapted to study the substrate specificity of other putative or uncharacterized glycosyltransferases.</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D76 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 000D76 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     ISTEX:79EA3BCD94FF6997A11CEE9DCA0E20B089DE3046
   |texte=   Utilizing the O-antigen lipopolysaccharide biosynthesis pathway in Escherichia coli to interrogate the substrate specificities of exogenous glycosyltransferase genes in a combinatorial approach
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024