Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Band gap of hexagonal InN and InGaN alloys

Identifieur interne : 000849 ( Russie/Analysis ); précédent : 000848; suivant : 000850

Band gap of hexagonal InN and InGaN alloys

Auteurs : RBID : Pascal:03-0119957

Descripteurs français

English descriptors

Abstract

A survey of most recent studies of optical absorption, photoluminescence, photoluminescence excitation, and photomodulated reflectance spectra of single-crystalline hexagonal InN layers is presented. The samples studied were undoped n-type InN with electron concentrations between 6 × 1018 and 4 × 1019 cm-3. It has been found that hexagonal InN is a narrow-gap semiconductor with a band gap of about 0.7 eV, which is much lower than the band gap cited in the literature. We also describe optical investigations of In-rich InxGa1-xN alloy layers (0.36 < x < 1) which have shown that the bowing parameter of b ∼ 2.5 eV allows one to reconcile our results and the literature data for the band gap of InxGa1-xN alloys over the entire composition region. Special attention is paid to the effects of post-growth treatment of InN crystals. It is shown that annealing in vacuum leads to a decrease in electron concentration and considerable homogenization of the optical characteristics of InN samples. At the same time, annealing in an oxygen atmosphere leads to formation of optically transparent alloys of InN-In2O3 type, the band gap of which reaches approximately 2 eV at an oxygen concentration of about 20%. It is evident from photoluminescence spectra that the samples saturated partially by oxygen still contain fragments of InN of mesoscopic size.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:03-0119957

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Band gap of hexagonal InN and InGaN alloys</title>
<author>
<name sortKey="Davydov, V Yu" uniqKey="Davydov V">V. Yu. Davydov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Ioffe Physico-Technical Institute, RAS</s1>
<s2>19402 St. Petersburg</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>19402 St. Petersburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Klochikhin, A A" uniqKey="Klochikhin A">A. A. Klochikhin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Ioffe Physico-Technical Institute, RAS</s1>
<s2>19402 St. Petersburg</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>19402 St. Petersburg</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Petersburg Nuclear Physics Institute, Russian Academy of Sciences</s1>
<s2>Gatchina, 188350 St. Petersburg</s2>
<s3>RUS</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>Gatchina, 188350 St. Petersburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Emtsev, V V" uniqKey="Emtsev V">V. V. Emtsev</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Ioffe Physico-Technical Institute, RAS</s1>
<s2>19402 St. Petersburg</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>19402 St. Petersburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kurdyukov, D A" uniqKey="Kurdyukov D">D. A. Kurdyukov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Ioffe Physico-Technical Institute, RAS</s1>
<s2>19402 St. Petersburg</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>19402 St. Petersburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ivanov, S V" uniqKey="Ivanov S">S. V. Ivanov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Ioffe Physico-Technical Institute, RAS</s1>
<s2>19402 St. Petersburg</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>19402 St. Petersburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vekshin, V A" uniqKey="Vekshin V">V. A. Vekshin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Ioffe Physico-Technical Institute, RAS</s1>
<s2>19402 St. Petersburg</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>19402 St. Petersburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bechstedt, F" uniqKey="Bechstedt F">F. Bechstedt</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institut fur Festkörpertheorie and Theoretische Optik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1</s1>
<s2>07743 Jena</s2>
<s3>DEU</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>07743 Jena</wicri:noRegion>
<wicri:noRegion>Max-Wien-Platz 1</wicri:noRegion>
<wicri:noRegion>07743 Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Furthm Ller, J" uniqKey="Furthm Ller J">J. Furthm Ller</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institut fur Festkörpertheorie and Theoretische Optik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1</s1>
<s2>07743 Jena</s2>
<s3>DEU</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>07743 Jena</wicri:noRegion>
<wicri:noRegion>Max-Wien-Platz 1</wicri:noRegion>
<wicri:noRegion>07743 Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Aderhold, J" uniqKey="Aderhold J">J. Aderhold</name>
<affiliation wicri:level="3">
<inist:fA14 i1="04">
<s1>Lfl University of Hannover, Schneiderberg 32</s1>
<s2>30167 Hannover</s2>
<s3>DEU</s3>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Hanovre</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Graul, J" uniqKey="Graul J">J. Graul</name>
<affiliation wicri:level="3">
<inist:fA14 i1="04">
<s1>Lfl University of Hannover, Schneiderberg 32</s1>
<s2>30167 Hannover</s2>
<s3>DEU</s3>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Hanovre</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mudryi, A V" uniqKey="Mudryi A">A. V. Mudryi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Institute of Solid State and Semiconductor Physics, Belarus Academy of Sciences, Brovki 17</s1>
<s2>220072 Minsk</s2>
<s3>BLR</s3>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Biélorussie</country>
<wicri:noRegion>220072 Minsk</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Harima, H" uniqKey="Harima H">H. Harima</name>
<affiliation wicri:level="1">
<inist:fA14 i1="06">
<s1>Department of Electronics and Information Science, Kyoto Institute of Technology, Matsugasaki</s1>
<s2>Sakyo-ku, Kyoto 606-8585</s2>
<s3>JPN</s3>
<sZ>12 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Sakyo-ku, Kyoto 606-8585</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hashimoto, A" uniqKey="Hashimoto A">A. Hashimoto</name>
<affiliation wicri:level="1">
<inist:fA14 i1="07">
<s1>Department of Electronics Engineering, Fukui University</s1>
<s2>Bunkyo, Fukui 910-8507</s2>
<s3>JPN</s3>
<sZ>13 aut.</sZ>
<sZ>14 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Bunkyo, Fukui 910-8507</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yamamoto, A" uniqKey="Yamamoto A">A. Yamamoto</name>
<affiliation wicri:level="1">
<inist:fA14 i1="07">
<s1>Department of Electronics Engineering, Fukui University</s1>
<s2>Bunkyo, Fukui 910-8507</s2>
<s3>JPN</s3>
<sZ>13 aut.</sZ>
<sZ>14 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Bunkyo, Fukui 910-8507</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Haller, E E" uniqKey="Haller E">E. E. Haller</name>
<affiliation wicri:level="1">
<inist:fA14 i1="08">
<s1>University of California and Lawrence Berkeley National Laboratory</s1>
<s2>Berkeley, CA 94720</s2>
<s3>USA</s3>
<sZ>15 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>University of California and Lawrence Berkeley National Laboratory</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">03-0119957</idno>
<date when="2002">2002</date>
<idno type="stanalyst">PASCAL 03-0119957 INIST</idno>
<idno type="RBID">Pascal:03-0119957</idno>
<idno type="wicri:Area/Main/Corpus">00DB58</idno>
<idno type="wicri:Area/Main/Repository">00F869</idno>
<idno type="wicri:Area/Russie/Extraction">000849</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0370-1972</idno>
<title level="j" type="abbreviated">Phys. status solidi, B, Basic res.</title>
<title level="j" type="main">Physica status solidi. B. Basic research</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorption spectra</term>
<term>Annealing</term>
<term>Carrier density</term>
<term>Excitation spectrum</term>
<term>Experimental study</term>
<term>Gallium nitrides</term>
<term>Hexagonal lattices</term>
<term>Indium nitrides</term>
<term>Monocrystals</term>
<term>Narrow band gap semiconductors</term>
<term>Nonstoichiometry</term>
<term>Optical constants</term>
<term>Photoluminescence</term>
<term>Reflectance</term>
<term>Ternary compounds</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Etude expérimentale</term>
<term>Spectre absorption</term>
<term>Photoluminescence</term>
<term>Spectre excitation</term>
<term>Coefficient réflexion</term>
<term>Densité porteur charge</term>
<term>Recuit</term>
<term>Non stoechiométrie</term>
<term>Constante optique</term>
<term>Réseau hexagonal</term>
<term>Indium nitrure</term>
<term>Semiconducteur bande interdite étroite</term>
<term>Composé ternaire</term>
<term>Gallium nitrure</term>
<term>Monocristal</term>
<term>In N</term>
<term>InN</term>
<term>Ga In N</term>
<term>InGaN</term>
<term>7120N</term>
<term>7840F</term>
<term>7855C</term>
<term>InxGa1-xN</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A survey of most recent studies of optical absorption, photoluminescence, photoluminescence excitation, and photomodulated reflectance spectra of single-crystalline hexagonal InN layers is presented. The samples studied were undoped n-type InN with electron concentrations between 6 × 10
<sup>18</sup>
and 4 × 10
<sup>19</sup>
cm
<sup>-3</sup>
. It has been found that hexagonal InN is a narrow-gap semiconductor with a band gap of about 0.7 eV, which is much lower than the band gap cited in the literature. We also describe optical investigations of In-rich In
<sub>x</sub>
Ga
<sub>1-x</sub>
N alloy layers (0.36 < x < 1) which have shown that the bowing parameter of b ∼ 2.5 eV allows one to reconcile our results and the literature data for the band gap of In
<sub>x</sub>
Ga
<sub>1-x</sub>
N alloys over the entire composition region. Special attention is paid to the effects of post-growth treatment of InN crystals. It is shown that annealing in vacuum leads to a decrease in electron concentration and considerable homogenization of the optical characteristics of InN samples. At the same time, annealing in an oxygen atmosphere leads to formation of optically transparent alloys of InN-In
<sub>2</sub>
O
<sub>3</sub>
type, the band gap of which reaches approximately 2 eV at an oxygen concentration of about 20%. It is evident from photoluminescence spectra that the samples saturated partially by oxygen still contain fragments of InN of mesoscopic size.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0370-1972</s0>
</fA01>
<fA02 i1="01">
<s0>PSSBBD</s0>
</fA02>
<fA03 i2="1">
<s0>Phys. status solidi, B, Basic res.</s0>
</fA03>
<fA05>
<s2>234</s2>
</fA05>
<fA06>
<s2>3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Band gap of hexagonal InN and InGaN alloys</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>DAVYDOV (V. Yu.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KLOCHIKHIN (A. A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>EMTSEV (V. V.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>KURDYUKOV (D. A.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>IVANOV (S. V.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>VEKSHIN (V. A.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>BECHSTEDT (F.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>FURTHMÜLLER (J.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>ADERHOLD (J.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>GRAUL (J.)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>MUDRYI (A. V.)</s1>
</fA11>
<fA11 i1="12" i2="1">
<s1>HARIMA (H.)</s1>
</fA11>
<fA11 i1="13" i2="1">
<s1>HASHIMOTO (A.)</s1>
</fA11>
<fA11 i1="14" i2="1">
<s1>YAMAMOTO (A.)</s1>
</fA11>
<fA11 i1="15" i2="1">
<s1>HALLER (E. E.)</s1>
</fA11>
<fA14 i1="01">
<s1>Ioffe Physico-Technical Institute, RAS</s1>
<s2>19402 St. Petersburg</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Petersburg Nuclear Physics Institute, Russian Academy of Sciences</s1>
<s2>Gatchina, 188350 St. Petersburg</s2>
<s3>RUS</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Institut fur Festkörpertheorie and Theoretische Optik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1</s1>
<s2>07743 Jena</s2>
<s3>DEU</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Lfl University of Hannover, Schneiderberg 32</s1>
<s2>30167 Hannover</s2>
<s3>DEU</s3>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Institute of Solid State and Semiconductor Physics, Belarus Academy of Sciences, Brovki 17</s1>
<s2>220072 Minsk</s2>
<s3>BLR</s3>
<sZ>11 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>Department of Electronics and Information Science, Kyoto Institute of Technology, Matsugasaki</s1>
<s2>Sakyo-ku, Kyoto 606-8585</s2>
<s3>JPN</s3>
<sZ>12 aut.</sZ>
</fA14>
<fA14 i1="07">
<s1>Department of Electronics Engineering, Fukui University</s1>
<s2>Bunkyo, Fukui 910-8507</s2>
<s3>JPN</s3>
<sZ>13 aut.</sZ>
<sZ>14 aut.</sZ>
</fA14>
<fA14 i1="08">
<s1>University of California and Lawrence Berkeley National Laboratory</s1>
<s2>Berkeley, CA 94720</s2>
<s3>USA</s3>
<sZ>15 aut.</sZ>
</fA14>
<fA20>
<s1>787-795</s1>
</fA20>
<fA21>
<s1>2002</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>10183B</s2>
<s5>354000107204990220</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2003 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>15 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>03-0119957</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physica status solidi. B. Basic research</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>A survey of most recent studies of optical absorption, photoluminescence, photoluminescence excitation, and photomodulated reflectance spectra of single-crystalline hexagonal InN layers is presented. The samples studied were undoped n-type InN with electron concentrations between 6 × 10
<sup>18</sup>
and 4 × 10
<sup>19</sup>
cm
<sup>-3</sup>
. It has been found that hexagonal InN is a narrow-gap semiconductor with a band gap of about 0.7 eV, which is much lower than the band gap cited in the literature. We also describe optical investigations of In-rich In
<sub>x</sub>
Ga
<sub>1-x</sub>
N alloy layers (0.36 < x < 1) which have shown that the bowing parameter of b ∼ 2.5 eV allows one to reconcile our results and the literature data for the band gap of In
<sub>x</sub>
Ga
<sub>1-x</sub>
N alloys over the entire composition region. Special attention is paid to the effects of post-growth treatment of InN crystals. It is shown that annealing in vacuum leads to a decrease in electron concentration and considerable homogenization of the optical characteristics of InN samples. At the same time, annealing in an oxygen atmosphere leads to formation of optically transparent alloys of InN-In
<sub>2</sub>
O
<sub>3</sub>
type, the band gap of which reaches approximately 2 eV at an oxygen concentration of about 20%. It is evident from photoluminescence spectra that the samples saturated partially by oxygen still contain fragments of InN of mesoscopic size.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70A20N</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70H40F</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70H55C</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Spectre absorption</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Absorption spectra</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Spectre excitation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Excitation spectrum</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Espectro excitación</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Coefficient réflexion</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Reflectance</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Coeficiente reflexión</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Densité porteur charge</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Carrier density</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Recuit</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Annealing</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Non stoechiométrie</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Nonstoichiometry</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Constante optique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Optical constants</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Réseau hexagonal</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Hexagonal lattices</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Indium nitrure</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Indium nitrides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Semiconducteur bande interdite étroite</s0>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Narrow band gap semiconductors</s0>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Composé ternaire</s0>
<s5>18</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Ternary compounds</s0>
<s5>18</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Gallium nitrure</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Gallium nitrides</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Monocristal</s0>
<s5>20</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Monocrystals</s0>
<s5>20</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>In N</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>InN</s0>
<s4>INC</s4>
<s5>53</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Ga In N</s0>
<s4>INC</s4>
<s5>54</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>InGaN</s0>
<s4>INC</s4>
<s5>55</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>7120N</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>7840F</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>7855C</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>58</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>InxGa1-xN</s0>
<s4>INC</s4>
<s5>92</s5>
</fC03>
<fC07 i1="01" i2="3" l="FRE">
<s0>Composé minéral</s0>
<s5>48</s5>
</fC07>
<fC07 i1="01" i2="3" l="ENG">
<s0>Inorganic compounds</s0>
<s5>48</s5>
</fC07>
<fN21>
<s1>069</s1>
</fN21>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>International Workshop on Nitride Semiconductors</s1>
<s3>Aachen DEU</s3>
<s4>2002-07-22</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000849 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 000849 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:03-0119957
   |texte=   Band gap of hexagonal InN and InGaN alloys
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024