Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effect of indium-doped interlayer on the strain relief in GaN films grown on Si(111)

Identifieur interne : 001183 ( Chine/Analysis ); précédent : 001182; suivant : 001184

Effect of indium-doped interlayer on the strain relief in GaN films grown on Si(111)

Auteurs : RBID : Pascal:08-0144511

Descripteurs français

English descriptors

Abstract

Crack-free GaN films have been achieved by inserting an Indoped low-temperature (LT) AlGaN interlayer grown on silicon by metalorganic chemical vapor deposition. The relationship between lattice constants and a obtained by X-ray diffraction analysis shows that indium doping interlayer can reduce the stress in GaN layers. The stress in GaN decreases with increasing trimethylindium (TMIn) during interlayer growth. Moreover, for a smaller TMIn flow, the stress in GaN decreases dramatically when In acts as a surfactant to improve the crystallinity of the AlGaN interiayer, and for a larger TMIn flow, the stress will increase again. The decreased stress leads to smoother surfaces and fewer cracks for GaN layers by using an In-doped interlayer than by using an undoped interlayer. In doping has been found to enhance the lateral growth and reduce the growth rate of the c face. It can explain the strain relief and cracks reduction in GaN films.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:08-0144511

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Effect of indium-doped interlayer on the strain relief in GaN films grown on Si(111)</title>
<author>
<name>JIEJUN WU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Research Center for Wide-gap Semiconductors, State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>LUBING ZHAO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Research Center for Wide-gap Semiconductors, State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>GUOYI ZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Research Center for Wide-gap Semiconductors, State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>XIANGLIN LIU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912</s1>
<s2>Beijing 100083</s2>
<s3>CHN</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>QINSHENG ZHU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912</s1>
<s2>Beijing 100083</s2>
<s3>CHN</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>ZHANGUO WANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912</s1>
<s2>Beijing 100083</s2>
<s3>CHN</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>QUANJIE JIA</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institute of High Energy Physics, Chinese Academy of Science</s1>
<s2>Beijing 100039</s2>
<s3>CHN</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>LIPING GUO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institute of High Energy Physics, Chinese Academy of Science</s1>
<s2>Beijing 100039</s2>
<s3>CHN</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>TIANDOU HU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institute of High Energy Physics, Chinese Academy of Science</s1>
<s2>Beijing 100039</s2>
<s3>CHN</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">08-0144511</idno>
<date when="2008">2008</date>
<idno type="stanalyst">PASCAL 08-0144511 INIST</idno>
<idno type="RBID">Pascal:08-0144511</idno>
<idno type="wicri:Area/Main/Corpus">006D55</idno>
<idno type="wicri:Area/Main/Repository">006944</idno>
<idno type="wicri:Area/Chine/Extraction">001183</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1862-6300</idno>
<title level="j" type="abbreviated">Phys. status solidi, A Appl. mater. sci. : (Print)</title>
<title level="j" type="main">Physica status solidi. A, Applications and materials science : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Crystallinity</term>
<term>Doping</term>
<term>Gallium nitride</term>
<term>Indium additions</term>
<term>Interfacial layer</term>
<term>Interrupts</term>
<term>Lateral growth</term>
<term>Lattice parameters</term>
<term>MOCVD</term>
<term>Photoluminescence</term>
<term>Self-assembled layers</term>
<term>Strained layer</term>
<term>Surface morphology</term>
<term>XRD</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Dopage</term>
<term>Couche interfaciale</term>
<term>Morphologie surface</term>
<term>Méthode MOCVD</term>
<term>Paramètre cristallin</term>
<term>Diffraction RX</term>
<term>Photoluminescence</term>
<term>Interruption</term>
<term>Cristallinité</term>
<term>Addition indium</term>
<term>Croissance latérale</term>
<term>Nitrure de gallium</term>
<term>Couche autoassemblée</term>
<term>Couche contrainte</term>
<term>GaN</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Crack-free GaN films have been achieved by inserting an Indoped low-temperature (LT) AlGaN interlayer grown on silicon by metalorganic chemical vapor deposition. The relationship between lattice constants and a obtained by X-ray diffraction analysis shows that indium doping interlayer can reduce the stress in GaN layers. The stress in GaN decreases with increasing trimethylindium (TMIn) during interlayer growth. Moreover, for a smaller TMIn flow, the stress in GaN decreases dramatically when In acts as a surfactant to improve the crystallinity of the AlGaN interiayer, and for a larger TMIn flow, the stress will increase again. The decreased stress leads to smoother surfaces and fewer cracks for GaN layers by using an In-doped interlayer than by using an undoped interlayer. In doping has been found to enhance the lateral growth and reduce the growth rate of the c face. It can explain the strain relief and cracks reduction in GaN films.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1862-6300</s0>
</fA01>
<fA03 i2="1">
<s0>Phys. status solidi, A Appl. mater. sci. : (Print)</s0>
</fA03>
<fA05>
<s2>205</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Effect of indium-doped interlayer on the strain relief in GaN films grown on Si(111)</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>JIEJUN WU</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LUBING ZHAO</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>GUOYI ZHANG</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>XIANGLIN LIU</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>QINSHENG ZHU</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>ZHANGUO WANG</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>QUANJIE JIA</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>LIPING GUO</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>TIANDOU HU</s1>
</fA11>
<fA14 i1="01">
<s1>Research Center for Wide-gap Semiconductors, State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912</s1>
<s2>Beijing 100083</s2>
<s3>CHN</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Institute of High Energy Physics, Chinese Academy of Science</s1>
<s2>Beijing 100039</s2>
<s3>CHN</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA20>
<s1>294-299</s1>
</fA20>
<fA21>
<s1>2008</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>10183A</s2>
<s5>354000175038490130</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2008 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>28 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>08-0144511</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physica status solidi. A, Applications and materials science : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Crack-free GaN films have been achieved by inserting an Indoped low-temperature (LT) AlGaN interlayer grown on silicon by metalorganic chemical vapor deposition. The relationship between lattice constants and a obtained by X-ray diffraction analysis shows that indium doping interlayer can reduce the stress in GaN layers. The stress in GaN decreases with increasing trimethylindium (TMIn) during interlayer growth. Moreover, for a smaller TMIn flow, the stress in GaN decreases dramatically when In acts as a surfactant to improve the crystallinity of the AlGaN interiayer, and for a larger TMIn flow, the stress will increase again. The decreased stress leads to smoother surfaces and fewer cracks for GaN layers by using an In-doped interlayer than by using an undoped interlayer. In doping has been found to enhance the lateral growth and reduce the growth rate of the c face. It can explain the strain relief and cracks reduction in GaN films.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A15G</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70H66F</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Doping</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Doping</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Couche interfaciale</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Interfacial layer</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Capa interfacial</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Morphologie surface</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Surface morphology</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Méthode MOCVD</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>MOCVD</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Paramètre cristallin</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Lattice parameters</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>XRD</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Interruption</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Interrupts</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Cristallinité</s0>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Crystallinity</s0>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Cristalinidad</s0>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Addition indium</s0>
<s5>13</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Indium additions</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Croissance latérale</s0>
<s5>14</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Lateral growth</s0>
<s5>14</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Crecimiento lateral</s0>
<s5>14</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Nitrure de gallium</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Gallium nitride</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Galio nitruro</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Couche autoassemblée</s0>
<s5>16</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Self-assembled layers</s0>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Couche contrainte</s0>
<s5>18</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Strained layer</s0>
<s5>18</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Capa forzada</s0>
<s5>18</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>GaN</s0>
<s4>INC</s4>
<s5>53</s5>
</fC03>
<fN21>
<s1>084</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001183 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 001183 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:08-0144511
   |texte=   Effect of indium-doped interlayer on the strain relief in GaN films grown on Si(111)
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024