Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Phase transition characteristics of the relaxor-based 0.24PIN-0.51PMN-0.25PT single crystals

Identifieur interne : 000155 ( Chine/Analysis ); précédent : 000154; suivant : 000156

Phase transition characteristics of the relaxor-based 0.24PIN-0.51PMN-0.25PT single crystals

Auteurs : RBID : Pascal:13-0176957

Descripteurs français

English descriptors

Abstract

Phase transition characteristics of relaxor-based 0.24PIN-0.51PMN-0.25PT single crystal were investigated through combination of dielectric and piezoelectric properties measurement, hysteresis loop measurements and domain morphology observation with increasing temperature. The phase transition from rhombohedral phase to relaxor cubic phase occurs near 120 °C. The poled crystals exhibit dielectric properties of normal ferroelectrics below 120 °C with frequency independence and show no piezoelectricity over 120 °C with disappearance of resonance and anti-resonance peaks in the impedance spectrum. The poled crystals show clearer domain morphology than that of unpoled crystals. Square hysteresis loop feature was found to transform to double loop like feature under the temperature of about 10 °C lower than 120 °C. The double like hysteresis loop disappears and the hysteresis loop is nearly linear above dielectric maximum temperature ∼150 °C. The more evident dielectric dispersion phenomenon and finer domains with width 1-3 μm are presented in 0.24PIN-0.51PMN-0.25PT crystal, compared to 0.76PMN-0.24PT single crystal.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0176957

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Phase transition characteristics of the relaxor-based 0.24PIN-0.51PMN-0.25PT single crystals</title>
<author>
<name>YUHUI WAN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University</s1>
<s2>Xi'an 710049</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Xi'an 710049</wicri:noRegion>
</affiliation>
</author>
<author>
<name>ZHENRONG LI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University</s1>
<s2>Xi'an 710049</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Xi'an 710049</wicri:noRegion>
</affiliation>
</author>
<author>
<name>ZHUO XU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University</s1>
<s2>Xi'an 710049</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Xi'an 710049</wicri:noRegion>
</affiliation>
</author>
<author>
<name>SHIJI FAN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University</s1>
<s2>Xi'an 710049</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Xi'an 710049</wicri:noRegion>
</affiliation>
</author>
<author>
<name>XI YAO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University</s1>
<s2>Xi'an 710049</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Xi'an 710049</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0176957</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0176957 INIST</idno>
<idno type="RBID">Pascal:13-0176957</idno>
<idno type="wicri:Area/Main/Corpus">000E27</idno>
<idno type="wicri:Area/Main/Repository">000745</idno>
<idno type="wicri:Area/Chine/Extraction">000155</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0925-8388</idno>
<title level="j" type="abbreviated">J. alloys compd.</title>
<title level="j" type="main">Journal of alloys and compounds</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Coercive force</term>
<term>Cubic lattices</term>
<term>Dielectric dispersion</term>
<term>Dielectric properties</term>
<term>Ferroelectric hysteresis</term>
<term>Indium Lead Niobates Mixed</term>
<term>Lead magnesium niobates</term>
<term>Lead titanates</term>
<term>Microstructure</term>
<term>Monocrystals</term>
<term>Piezoelectricity</term>
<term>Poling</term>
<term>Relaxor</term>
<term>Ternary systems</term>
<term>Transition element compounds</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Propriété diélectrique</term>
<term>Piézoélectricité</term>
<term>Microstructure</term>
<term>Polarisation périodique</term>
<term>Dispersion diélectrique</term>
<term>Hystérésis ferroélectrique</term>
<term>Force coercitive</term>
<term>Relaxeur</term>
<term>Monocristal</term>
<term>Réseau cubique</term>
<term>Indium Plomb Niobate Mixte</term>
<term>Titanate de plomb</term>
<term>Système ternaire</term>
<term>Composé de métal de transition</term>
<term>Magnoniobate de plomb</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Phase transition characteristics of relaxor-based 0.24PIN-0.51PMN-0.25PT single crystal were investigated through combination of dielectric and piezoelectric properties measurement, hysteresis loop measurements and domain morphology observation with increasing temperature. The phase transition from rhombohedral phase to relaxor cubic phase occurs near 120 °C. The poled crystals exhibit dielectric properties of normal ferroelectrics below 120 °C with frequency independence and show no piezoelectricity over 120 °C with disappearance of resonance and anti-resonance peaks in the impedance spectrum. The poled crystals show clearer domain morphology than that of unpoled crystals. Square hysteresis loop feature was found to transform to double loop like feature under the temperature of about 10 °C lower than 120 °C. The double like hysteresis loop disappears and the hysteresis loop is nearly linear above dielectric maximum temperature ∼150 °C. The more evident dielectric dispersion phenomenon and finer domains with width 1-3 μm are presented in 0.24PIN-0.51PMN-0.25PT crystal, compared to 0.76PMN-0.24PT single crystal.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0925-8388</s0>
</fA01>
<fA03 i2="1">
<s0>J. alloys compd.</s0>
</fA03>
<fA05>
<s2>558</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Phase transition characteristics of the relaxor-based 0.24PIN-0.51PMN-0.25PT single crystals</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>YUHUI WAN</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ZHENRONG LI</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ZHUO XU</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SHIJI FAN</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>XI YAO</s1>
</fA11>
<fA14 i1="01">
<s1>Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University</s1>
<s2>Xi'an 710049</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>244-247</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>1151</s2>
<s5>354000500619290380</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>24 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0176957</s0>
</fA47>
<fA60>
<s1>P</s1>
<s3>CR</s3>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of alloys and compounds</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Phase transition characteristics of relaxor-based 0.24PIN-0.51PMN-0.25PT single crystal were investigated through combination of dielectric and piezoelectric properties measurement, hysteresis loop measurements and domain morphology observation with increasing temperature. The phase transition from rhombohedral phase to relaxor cubic phase occurs near 120 °C. The poled crystals exhibit dielectric properties of normal ferroelectrics below 120 °C with frequency independence and show no piezoelectricity over 120 °C with disappearance of resonance and anti-resonance peaks in the impedance spectrum. The poled crystals show clearer domain morphology than that of unpoled crystals. Square hysteresis loop feature was found to transform to double loop like feature under the temperature of about 10 °C lower than 120 °C. The double like hysteresis loop disappears and the hysteresis loop is nearly linear above dielectric maximum temperature ∼150 °C. The more evident dielectric dispersion phenomenon and finer domains with width 1-3 μm are presented in 0.24PIN-0.51PMN-0.25PT crystal, compared to 0.76PMN-0.24PT single crystal.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70G22G</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70G65</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70G80D</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Propriété diélectrique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Dielectric properties</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Piézoélectricité</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Piezoelectricity</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Microstructure</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Microstructure</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Polarisation périodique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Poling</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Dispersion diélectrique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Dielectric dispersion</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Dispersión dieléctrica</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Hystérésis ferroélectrique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Ferroelectric hysteresis</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Histéresis ferroeléctrica</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Force coercitive</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Coercive force</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Relaxeur</s0>
<s5>15</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Relaxor</s0>
<s5>15</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Monocristal</s0>
<s5>16</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Monocrystals</s0>
<s5>16</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Réseau cubique</s0>
<s5>17</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Cubic lattices</s0>
<s5>17</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Indium Plomb Niobate Mixte</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>18</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Indium Lead Niobates Mixed</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>18</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Mixto</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>18</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Titanate de plomb</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Lead titanates</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Système ternaire</s0>
<s5>20</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Ternary systems</s0>
<s5>20</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Composé de métal de transition</s0>
<s5>48</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Transition element compounds</s0>
<s5>48</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Magnoniobate de plomb</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Lead magnesium niobates</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="15" i2="3" l="SPA">
<s0>Niobato de Magnesio y plomo</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>154</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000155 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000155 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:13-0176957
   |texte=   Phase transition characteristics of the relaxor-based 0.24PIN-0.51PMN-0.25PT single crystals
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024