Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

On the performance of a highly loaded Co/SiO2 catalyst in the gas phase hydrogenation of crotonaldehyde thermal treatments: catalyst structure-selectivity relationship

Identifieur interne : 000101 ( PascalFrancis/Curation ); précédent : 000100; suivant : 000102

On the performance of a highly loaded Co/SiO2 catalyst in the gas phase hydrogenation of crotonaldehyde thermal treatments: catalyst structure-selectivity relationship

Auteurs : F. Djerboua [Algérie] ; D. Benachour [Algérie] ; R. Touroude [France]

Source :

RBID : Pascal:05-0170318

Descripteurs français

English descriptors

Abstract

This paper reports on the performance and its relation with the structure of a highly loaded (41 wt.%) Co/SiO2 catalyst in the gas phase hydrogenation of crotonaldehyde when varying the thermal treatments to which the catalyst precursor has been subjected. The optimum calcination and reduction temperatures were identified where the highest selectivity to crotyl alcohol (around 90%) was obtained with the catalyst calcined at 400 °C and reduced at 350 °C even at conversions as high as 60%. Higher temperature of calcination was found to lower the crotyl alcohol selectivity. Both, lower and higher reduction temperatures will not favour the crotyl alcohol formation. These results were interpreted and correlated with the surface structure of the catalyst which was shown by temperature programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS) analysis. Depending on the thermal conditions imposed, the surface consisted of either Co metal, or coexisting metal and its oxide; structure which favours the high crotyl alcohol selectivity. By TEM analysis, large particles (diameter exceeding 50 nm) were identified after reduction at 350 °C. A global activation energy of 44 kJ/mol was obtained with this catalyst. In the light of the obtained results a discussion on the reaction mechanism involving metal, metal-oxide double sites has been put forward. It was emphasised that, for selective hydrogenation of crotonaldehyde into unsaturated alcohol, Co catalysts compete favourably with platinum based catalysts.
pA  
A01 01  1    @0 0926-860X
A03   1    @0 Appl. catal., A Gen.
A05       @2 282
A06       @2 1-2
A08 01  1  ENG  @1 On the performance of a highly loaded Co/SiO2 catalyst in the gas phase hydrogenation of crotonaldehyde thermal treatments: catalyst structure-selectivity relationship
A11 01  1    @1 DJERBOUA (F.)
A11 02  1    @1 BENACHOUR (D.)
A11 03  1    @1 TOUROUDE (R.)
A14 01      @1 Département de Génie des Procédés, Faculté des Sciences de l'ingénieur, Université Ferhat Abbas, route de Maaboudah @2 Setif 19000 @3 DZA @Z 1 aut. @Z 2 aut.
A14 02      @1 LMSPC, UMR 7515 du CNRS ECPM.ULP, 25 rue Becquerel @2 67087 Strasbourg @3 FRA @Z 3 aut.
A20       @1 123-133
A21       @1 2005
A23 01      @0 ENG
A43 01      @1 INIST @2 18840A @5 354000126367680150
A44       @0 0000 @1 © 2005 INIST-CNRS. All rights reserved.
A45       @0 39 ref.
A47 01  1    @0 05-0170318
A60       @1 P
A61       @0 A
A64 01  1    @0 Applied catalysis. A, General
A66 01      @0 NLD
C01 01    ENG  @0 This paper reports on the performance and its relation with the structure of a highly loaded (41 wt.%) Co/SiO2 catalyst in the gas phase hydrogenation of crotonaldehyde when varying the thermal treatments to which the catalyst precursor has been subjected. The optimum calcination and reduction temperatures were identified where the highest selectivity to crotyl alcohol (around 90%) was obtained with the catalyst calcined at 400 °C and reduced at 350 °C even at conversions as high as 60%. Higher temperature of calcination was found to lower the crotyl alcohol selectivity. Both, lower and higher reduction temperatures will not favour the crotyl alcohol formation. These results were interpreted and correlated with the surface structure of the catalyst which was shown by temperature programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS) analysis. Depending on the thermal conditions imposed, the surface consisted of either Co metal, or coexisting metal and its oxide; structure which favours the high crotyl alcohol selectivity. By TEM analysis, large particles (diameter exceeding 50 nm) were identified after reduction at 350 °C. A global activation energy of 44 kJ/mol was obtained with this catalyst. In the light of the obtained results a discussion on the reaction mechanism involving metal, metal-oxide double sites has been put forward. It was emphasised that, for selective hydrogenation of crotonaldehyde into unsaturated alcohol, Co catalysts compete favourably with platinum based catalysts.
C02 01  X    @0 001C01A03
C03 01  X  FRE  @0 Silice @2 NK @2 FX @5 01
C03 01  X  ENG  @0 Silica @2 NK @2 FX @5 01
C03 01  X  SPA  @0 Sílice @2 NK @2 FX @5 01
C03 02  X  FRE  @0 Catalyseur @5 02
C03 02  X  ENG  @0 Catalyst @5 02
C03 02  X  SPA  @0 Catalizador @5 02
C03 03  X  FRE  @0 Phase gazeuse @5 03
C03 03  X  ENG  @0 Gas phase @5 03
C03 03  X  SPA  @0 Fase gaseosa @5 03
C03 04  X  FRE  @0 Hydrogénation @5 04
C03 04  X  ENG  @0 Hydrogenation @5 04
C03 04  X  SPA  @0 Hidrogenación @5 04
C03 05  X  FRE  @0 Sélectivité catalyseur @5 05
C03 05  X  ENG  @0 Catalyst selectivity @5 05
C03 05  X  SPA  @0 Selectividad catalizador @5 05
C03 06  X  FRE  @0 Structure @5 06
C03 06  X  ENG  @0 Structure @5 06
C03 06  X  SPA  @0 Estructura @5 06
C03 07  X  FRE  @0 Alcool @5 07
C03 07  X  ENG  @0 Alcohol @5 07
C03 07  X  SPA  @0 Alcohol @5 07
C03 08  X  FRE  @0 Oxyde @2 NA @5 08
C03 08  X  ENG  @0 Oxides @2 NA @5 08
C03 08  X  SPA  @0 Óxido @2 NA @5 08
C03 09  X  FRE  @0 Catalyse hétérogène @5 09
C03 09  X  ENG  @0 Heterogeneous catalysis @5 09
C03 09  X  SPA  @0 Catálisis heterogénea @5 09
C03 10  X  FRE  @0 Cobalt @2 NC @5 12
C03 10  X  ENG  @0 Cobalt @2 NC @5 12
C03 10  X  SPA  @0 Cobalto @2 NC @5 12
C03 11  X  FRE  @0 But-2-énal @4 INC @5 32
C07 01  X  FRE  @0 Enaldéhyde @5 10
C07 01  X  ENG  @0 Enaldehyde @5 10
C07 01  X  SPA  @0 Enaldehido @5 10
C07 02  X  FRE  @0 Métal transition @2 NC @5 11
C07 02  X  ENG  @0 Transition metal @2 NC @5 11
C07 02  X  SPA  @0 Metal transición @2 NC @5 11
N21       @1 115
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:05-0170318

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">On the performance of a highly loaded Co/SiO
<sub>2</sub>
catalyst in the gas phase hydrogenation of crotonaldehyde thermal treatments: catalyst structure-selectivity relationship</title>
<author>
<name sortKey="Djerboua, F" sort="Djerboua, F" uniqKey="Djerboua F" first="F." last="Djerboua">F. Djerboua</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Département de Génie des Procédés, Faculté des Sciences de l'ingénieur, Université Ferhat Abbas, route de Maaboudah</s1>
<s2>Setif 19000</s2>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Algérie</country>
</affiliation>
</author>
<author>
<name sortKey="Benachour, D" sort="Benachour, D" uniqKey="Benachour D" first="D." last="Benachour">D. Benachour</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Département de Génie des Procédés, Faculté des Sciences de l'ingénieur, Université Ferhat Abbas, route de Maaboudah</s1>
<s2>Setif 19000</s2>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Algérie</country>
</affiliation>
</author>
<author>
<name sortKey="Touroude, R" sort="Touroude, R" uniqKey="Touroude R" first="R." last="Touroude">R. Touroude</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>LMSPC, UMR 7515 du CNRS ECPM.ULP, 25 rue Becquerel</s1>
<s2>67087 Strasbourg</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">05-0170318</idno>
<date when="2005">2005</date>
<idno type="stanalyst">PASCAL 05-0170318 INIST</idno>
<idno type="RBID">Pascal:05-0170318</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000194</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000101</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">On the performance of a highly loaded Co/SiO
<sub>2</sub>
catalyst in the gas phase hydrogenation of crotonaldehyde thermal treatments: catalyst structure-selectivity relationship</title>
<author>
<name sortKey="Djerboua, F" sort="Djerboua, F" uniqKey="Djerboua F" first="F." last="Djerboua">F. Djerboua</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Département de Génie des Procédés, Faculté des Sciences de l'ingénieur, Université Ferhat Abbas, route de Maaboudah</s1>
<s2>Setif 19000</s2>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Algérie</country>
</affiliation>
</author>
<author>
<name sortKey="Benachour, D" sort="Benachour, D" uniqKey="Benachour D" first="D." last="Benachour">D. Benachour</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Département de Génie des Procédés, Faculté des Sciences de l'ingénieur, Université Ferhat Abbas, route de Maaboudah</s1>
<s2>Setif 19000</s2>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Algérie</country>
</affiliation>
</author>
<author>
<name sortKey="Touroude, R" sort="Touroude, R" uniqKey="Touroude R" first="R." last="Touroude">R. Touroude</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>LMSPC, UMR 7515 du CNRS ECPM.ULP, 25 rue Becquerel</s1>
<s2>67087 Strasbourg</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Applied catalysis. A, General</title>
<title level="j" type="abbreviated">Appl. catal., A Gen.</title>
<idno type="ISSN">0926-860X</idno>
<imprint>
<date when="2005">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Applied catalysis. A, General</title>
<title level="j" type="abbreviated">Appl. catal., A Gen.</title>
<idno type="ISSN">0926-860X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alcohol</term>
<term>Catalyst</term>
<term>Catalyst selectivity</term>
<term>Cobalt</term>
<term>Gas phase</term>
<term>Heterogeneous catalysis</term>
<term>Hydrogenation</term>
<term>Oxides</term>
<term>Silica</term>
<term>Structure</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Silice</term>
<term>Catalyseur</term>
<term>Phase gazeuse</term>
<term>Hydrogénation</term>
<term>Sélectivité catalyseur</term>
<term>Structure</term>
<term>Alcool</term>
<term>Oxyde</term>
<term>Catalyse hétérogène</term>
<term>Cobalt</term>
<term>But-2-énal</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Alcool</term>
<term>Oxyde</term>
<term>Cobalt</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper reports on the performance and its relation with the structure of a highly loaded (41 wt.%) Co/SiO
<sub>2</sub>
catalyst in the gas phase hydrogenation of crotonaldehyde when varying the thermal treatments to which the catalyst precursor has been subjected. The optimum calcination and reduction temperatures were identified where the highest selectivity to crotyl alcohol (around 90%) was obtained with the catalyst calcined at 400 °C and reduced at 350 °C even at conversions as high as 60%. Higher temperature of calcination was found to lower the crotyl alcohol selectivity. Both, lower and higher reduction temperatures will not favour the crotyl alcohol formation. These results were interpreted and correlated with the surface structure of the catalyst which was shown by temperature programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS) analysis. Depending on the thermal conditions imposed, the surface consisted of either Co metal, or coexisting metal and its oxide; structure which favours the high crotyl alcohol selectivity. By TEM analysis, large particles (diameter exceeding 50 nm) were identified after reduction at 350 °C. A global activation energy of 44 kJ/mol was obtained with this catalyst. In the light of the obtained results a discussion on the reaction mechanism involving metal, metal-oxide double sites has been put forward. It was emphasised that, for selective hydrogenation of crotonaldehyde into unsaturated alcohol, Co catalysts compete favourably with platinum based catalysts.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0926-860X</s0>
</fA01>
<fA03 i2="1">
<s0>Appl. catal., A Gen.</s0>
</fA03>
<fA05>
<s2>282</s2>
</fA05>
<fA06>
<s2>1-2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>On the performance of a highly loaded Co/SiO
<sub>2</sub>
catalyst in the gas phase hydrogenation of crotonaldehyde thermal treatments: catalyst structure-selectivity relationship</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>DJERBOUA (F.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BENACHOUR (D.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>TOUROUDE (R.)</s1>
</fA11>
<fA14 i1="01">
<s1>Département de Génie des Procédés, Faculté des Sciences de l'ingénieur, Université Ferhat Abbas, route de Maaboudah</s1>
<s2>Setif 19000</s2>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>LMSPC, UMR 7515 du CNRS ECPM.ULP, 25 rue Becquerel</s1>
<s2>67087 Strasbourg</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>123-133</s1>
</fA20>
<fA21>
<s1>2005</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18840A</s2>
<s5>354000126367680150</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2005 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>39 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>05-0170318</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Applied catalysis. A, General</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This paper reports on the performance and its relation with the structure of a highly loaded (41 wt.%) Co/SiO
<sub>2</sub>
catalyst in the gas phase hydrogenation of crotonaldehyde when varying the thermal treatments to which the catalyst precursor has been subjected. The optimum calcination and reduction temperatures were identified where the highest selectivity to crotyl alcohol (around 90%) was obtained with the catalyst calcined at 400 °C and reduced at 350 °C even at conversions as high as 60%. Higher temperature of calcination was found to lower the crotyl alcohol selectivity. Both, lower and higher reduction temperatures will not favour the crotyl alcohol formation. These results were interpreted and correlated with the surface structure of the catalyst which was shown by temperature programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS) analysis. Depending on the thermal conditions imposed, the surface consisted of either Co metal, or coexisting metal and its oxide; structure which favours the high crotyl alcohol selectivity. By TEM analysis, large particles (diameter exceeding 50 nm) were identified after reduction at 350 °C. A global activation energy of 44 kJ/mol was obtained with this catalyst. In the light of the obtained results a discussion on the reaction mechanism involving metal, metal-oxide double sites has been put forward. It was emphasised that, for selective hydrogenation of crotonaldehyde into unsaturated alcohol, Co catalysts compete favourably with platinum based catalysts.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001C01A03</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Silice</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Silica</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Sílice</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Catalyseur</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Catalyst</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Catalizador</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Phase gazeuse</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Gas phase</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Fase gaseosa</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Hydrogénation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Hydrogenation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Hidrogenación</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Sélectivité catalyseur</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Catalyst selectivity</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Selectividad catalizador</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Structure</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Structure</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Estructura</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Alcool</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Alcohol</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Alcohol</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Oxyde</s0>
<s2>NA</s2>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Oxides</s0>
<s2>NA</s2>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Óxido</s0>
<s2>NA</s2>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Catalyse hétérogène</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Heterogeneous catalysis</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Catálisis heterogénea</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Cobalt</s0>
<s2>NC</s2>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Cobalt</s0>
<s2>NC</s2>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Cobalto</s0>
<s2>NC</s2>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>But-2-énal</s0>
<s4>INC</s4>
<s5>32</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Enaldéhyde</s0>
<s5>10</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Enaldehyde</s0>
<s5>10</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Enaldehido</s0>
<s5>10</s5>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Métal transition</s0>
<s2>NC</s2>
<s5>11</s5>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Transition metal</s0>
<s2>NC</s2>
<s5>11</s5>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Metal transición</s0>
<s2>NC</s2>
<s5>11</s5>
</fC07>
<fN21>
<s1>115</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000101 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000101 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:05-0170318
   |texte=   On the performance of a highly loaded Co/SiO2 catalyst in the gas phase hydrogenation of crotonaldehyde thermal treatments: catalyst structure-selectivity relationship
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024