Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Magnetic and structural properties of electrodeposited CoPt and FePt nanowires in nanoporous alumina templates

Identifieur interne : 000155 ( PascalFrancis/Corpus ); précédent : 000154; suivant : 000156

Magnetic and structural properties of electrodeposited CoPt and FePt nanowires in nanoporous alumina templates

Auteurs : Y. Dahmane ; L. Cagnon ; J. Voiron ; S. Pairis ; M. Bacia ; L. Ortega ; N. Benbrahim ; A. Kadri

Source :

RBID : Pascal:06-0542437

Descripteurs français

English descriptors

Abstract

CoPt and FePt nanowire arrays were successfully prepared by electrodeposition into nanochannels of porous alumina membranes. The as-deposited CoPt alloy has a face centred cubic structure and displays soft magnetic properties. Heat treatment at 700 °C for different durations, under vacuum condition was carried out in order to obtain the ordered face centred tetragonal phase L10, exhibiting hard magnetic properties. After annealing, arrays of nanowires actually show hard magnetic properties with coercive fields up to 1.1 T at room temperature. Phase transformation, structural and magnetic properties were analysed and necessary conditions to obtain optimum magnetic properties are concluded. The first results obtained with FePt nanowires denote a more complicated system since the as-deposited material shows no magnetization. Magnetism appears only after annealing at 700 °C minimum. Coercivity up to 1.1 T has been obtained at room temperature but with inhomogeneous phase composition.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0022-3727
A02 01      @0 JPAPBE
A03   1    @0 J. phys., D. Appl. phys. : (Print)
A05       @2 39
A06       @2 21
A08 01  1  ENG  @1 Magnetic and structural properties of electrodeposited CoPt and FePt nanowires in nanoporous alumina templates
A11 01  1    @1 DAHMANE (Y.)
A11 02  1    @1 CAGNON (L.)
A11 03  1    @1 VOIRON (J.)
A11 04  1    @1 PAIRIS (S.)
A11 05  1    @1 BACIA (M.)
A11 06  1    @1 ORTEGA (L.)
A11 07  1    @1 BENBRAHIM (N.)
A11 08  1    @1 KADRI (A.)
A14 01      @1 Laboratoire Louis Néel, CNRS, BP 166 @2 38042 Grenoble @3 FRA @Z 1 aut. @Z 3 aut.
A14 02      @1 Laboratoire de Matériaux, Electrochimie et Corrosion, BP 17 @2 15000 Tizi-Ouzou @3 DZA @Z 1 aut. @Z 7 aut. @Z 8 aut.
A14 03      @1 Laboratoire de Cristallographie, CNRS, BP 166 @2 38042 Grenoble @3 FRA @Z 2 aut. @Z 4 aut. @Z 5 aut. @Z 6 aut.
A20       @1 4523-4528
A21       @1 2006
A23 01      @0 ENG
A43 01      @1 INIST @2 5841 @5 354000139174720030
A44       @0 0000 @1 © 2006 INIST-CNRS. All rights reserved.
A45       @0 28 ref.
A47 01  1    @0 06-0542437
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of physics. D, Applied physics : (Print)
A66 01      @0 GBR
C01 01    ENG  @0 CoPt and FePt nanowire arrays were successfully prepared by electrodeposition into nanochannels of porous alumina membranes. The as-deposited CoPt alloy has a face centred cubic structure and displays soft magnetic properties. Heat treatment at 700 °C for different durations, under vacuum condition was carried out in order to obtain the ordered face centred tetragonal phase L10, exhibiting hard magnetic properties. After annealing, arrays of nanowires actually show hard magnetic properties with coercive fields up to 1.1 T at room temperature. Phase transformation, structural and magnetic properties were analysed and necessary conditions to obtain optimum magnetic properties are concluded. The first results obtained with FePt nanowires denote a more complicated system since the as-deposited material shows no magnetization. Magnetism appears only after annealing at 700 °C minimum. Coercivity up to 1.1 T has been obtained at room temperature but with inhomogeneous phase composition.
C02 01  3    @0 001B70E75
C03 01  3  FRE  @0 Propriété magnétique @5 02
C03 01  3  ENG  @0 Magnetic properties @5 02
C03 02  3  FRE  @0 Dépôt électrolytique @5 03
C03 02  3  ENG  @0 Electrodeposition @5 03
C03 03  3  FRE  @0 Traitement thermique @5 04
C03 03  3  ENG  @0 Heat treatments @5 04
C03 04  3  FRE  @0 Recuit @5 05
C03 04  3  ENG  @0 Annealing @5 05
C03 05  3  FRE  @0 Force coercitive @5 06
C03 05  3  ENG  @0 Coercive force @5 06
C03 06  3  FRE  @0 Transformation phase @5 07
C03 06  3  ENG  @0 Phase transformations @5 07
C03 07  3  FRE  @0 Aimantation @5 08
C03 07  3  ENG  @0 Magnetization @5 08
C03 08  3  FRE  @0 Fer alliage @5 11
C03 08  3  ENG  @0 Iron alloys @5 11
C03 09  3  FRE  @0 Nanofil @5 15
C03 09  3  ENG  @0 Nanowires @5 15
C03 10  3  FRE  @0 Réseau cubique face centrée @5 16
C03 10  3  ENG  @0 FCC lattices @5 16
C03 11  3  FRE  @0 Réseau quadratique @5 17
C03 11  3  ENG  @0 Tetragonal lattices @5 17
C03 12  3  FRE  @0 Matériau magnétique doux @5 19
C03 12  3  ENG  @0 Soft magnetic materials @5 19
C03 13  3  FRE  @0 Cobalt alliage @5 20
C03 13  3  ENG  @0 Cobalt alloys @5 20
C03 14  3  FRE  @0 Platine alliage @5 21
C03 14  3  ENG  @0 Platinum alloys @5 21
C03 15  3  FRE  @0 Métal transition alliage @5 48
C03 15  3  ENG  @0 Transition element alloys @5 48
C03 16  3  FRE  @0 7575 @4 INC @5 62
N21       @1 353

Format Inist (serveur)

NO : PASCAL 06-0542437 INIST
ET : Magnetic and structural properties of electrodeposited CoPt and FePt nanowires in nanoporous alumina templates
AU : DAHMANE (Y.); CAGNON (L.); VOIRON (J.); PAIRIS (S.); BACIA (M.); ORTEGA (L.); BENBRAHIM (N.); KADRI (A.)
AF : Laboratoire Louis Néel, CNRS, BP 166/38042 Grenoble/France (1 aut., 3 aut.); Laboratoire de Matériaux, Electrochimie et Corrosion, BP 17/15000 Tizi-Ouzou/Algérie (1 aut., 7 aut., 8 aut.); Laboratoire de Cristallographie, CNRS, BP 166/38042 Grenoble/France (2 aut., 4 aut., 5 aut., 6 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of physics. D, Applied physics : (Print); ISSN 0022-3727; Coden JPAPBE; Royaume-Uni; Da. 2006; Vol. 39; No. 21; Pp. 4523-4528; Bibl. 28 ref.
LA : Anglais
EA : CoPt and FePt nanowire arrays were successfully prepared by electrodeposition into nanochannels of porous alumina membranes. The as-deposited CoPt alloy has a face centred cubic structure and displays soft magnetic properties. Heat treatment at 700 °C for different durations, under vacuum condition was carried out in order to obtain the ordered face centred tetragonal phase L10, exhibiting hard magnetic properties. After annealing, arrays of nanowires actually show hard magnetic properties with coercive fields up to 1.1 T at room temperature. Phase transformation, structural and magnetic properties were analysed and necessary conditions to obtain optimum magnetic properties are concluded. The first results obtained with FePt nanowires denote a more complicated system since the as-deposited material shows no magnetization. Magnetism appears only after annealing at 700 °C minimum. Coercivity up to 1.1 T has been obtained at room temperature but with inhomogeneous phase composition.
CC : 001B70E75
FD : Propriété magnétique; Dépôt électrolytique; Traitement thermique; Recuit; Force coercitive; Transformation phase; Aimantation; Fer alliage; Nanofil; Réseau cubique face centrée; Réseau quadratique; Matériau magnétique doux; Cobalt alliage; Platine alliage; Métal transition alliage; 7575
ED : Magnetic properties; Electrodeposition; Heat treatments; Annealing; Coercive force; Phase transformations; Magnetization; Iron alloys; Nanowires; FCC lattices; Tetragonal lattices; Soft magnetic materials; Cobalt alloys; Platinum alloys; Transition element alloys
LO : INIST-5841.354000139174720030
ID : 06-0542437

Links to Exploration step

Pascal:06-0542437

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Magnetic and structural properties of electrodeposited CoPt and FePt nanowires in nanoporous alumina templates</title>
<author>
<name sortKey="Dahmane, Y" sort="Dahmane, Y" uniqKey="Dahmane Y" first="Y." last="Dahmane">Y. Dahmane</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire Louis Néel, CNRS, BP 166</s1>
<s2>38042 Grenoble</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire de Matériaux, Electrochimie et Corrosion, BP 17</s1>
<s2>15000 Tizi-Ouzou</s2>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Cagnon, L" sort="Cagnon, L" uniqKey="Cagnon L" first="L." last="Cagnon">L. Cagnon</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Laboratoire de Cristallographie, CNRS, BP 166</s1>
<s2>38042 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Voiron, J" sort="Voiron, J" uniqKey="Voiron J" first="J." last="Voiron">J. Voiron</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire Louis Néel, CNRS, BP 166</s1>
<s2>38042 Grenoble</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Pairis, S" sort="Pairis, S" uniqKey="Pairis S" first="S." last="Pairis">S. Pairis</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Laboratoire de Cristallographie, CNRS, BP 166</s1>
<s2>38042 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bacia, M" sort="Bacia, M" uniqKey="Bacia M" first="M." last="Bacia">M. Bacia</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Laboratoire de Cristallographie, CNRS, BP 166</s1>
<s2>38042 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ortega, L" sort="Ortega, L" uniqKey="Ortega L" first="L." last="Ortega">L. Ortega</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Laboratoire de Cristallographie, CNRS, BP 166</s1>
<s2>38042 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Benbrahim, N" sort="Benbrahim, N" uniqKey="Benbrahim N" first="N." last="Benbrahim">N. Benbrahim</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire de Matériaux, Electrochimie et Corrosion, BP 17</s1>
<s2>15000 Tizi-Ouzou</s2>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kadri, A" sort="Kadri, A" uniqKey="Kadri A" first="A." last="Kadri">A. Kadri</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire de Matériaux, Electrochimie et Corrosion, BP 17</s1>
<s2>15000 Tizi-Ouzou</s2>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">06-0542437</idno>
<date when="2006">2006</date>
<idno type="stanalyst">PASCAL 06-0542437 INIST</idno>
<idno type="RBID">Pascal:06-0542437</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000155</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Magnetic and structural properties of electrodeposited CoPt and FePt nanowires in nanoporous alumina templates</title>
<author>
<name sortKey="Dahmane, Y" sort="Dahmane, Y" uniqKey="Dahmane Y" first="Y." last="Dahmane">Y. Dahmane</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire Louis Néel, CNRS, BP 166</s1>
<s2>38042 Grenoble</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire de Matériaux, Electrochimie et Corrosion, BP 17</s1>
<s2>15000 Tizi-Ouzou</s2>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Cagnon, L" sort="Cagnon, L" uniqKey="Cagnon L" first="L." last="Cagnon">L. Cagnon</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Laboratoire de Cristallographie, CNRS, BP 166</s1>
<s2>38042 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Voiron, J" sort="Voiron, J" uniqKey="Voiron J" first="J." last="Voiron">J. Voiron</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire Louis Néel, CNRS, BP 166</s1>
<s2>38042 Grenoble</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Pairis, S" sort="Pairis, S" uniqKey="Pairis S" first="S." last="Pairis">S. Pairis</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Laboratoire de Cristallographie, CNRS, BP 166</s1>
<s2>38042 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bacia, M" sort="Bacia, M" uniqKey="Bacia M" first="M." last="Bacia">M. Bacia</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Laboratoire de Cristallographie, CNRS, BP 166</s1>
<s2>38042 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ortega, L" sort="Ortega, L" uniqKey="Ortega L" first="L." last="Ortega">L. Ortega</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Laboratoire de Cristallographie, CNRS, BP 166</s1>
<s2>38042 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Benbrahim, N" sort="Benbrahim, N" uniqKey="Benbrahim N" first="N." last="Benbrahim">N. Benbrahim</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire de Matériaux, Electrochimie et Corrosion, BP 17</s1>
<s2>15000 Tizi-Ouzou</s2>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kadri, A" sort="Kadri, A" uniqKey="Kadri A" first="A." last="Kadri">A. Kadri</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire de Matériaux, Electrochimie et Corrosion, BP 17</s1>
<s2>15000 Tizi-Ouzou</s2>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of physics. D, Applied physics : (Print)</title>
<title level="j" type="abbreviated">J. phys., D. Appl. phys. : (Print)</title>
<idno type="ISSN">0022-3727</idno>
<imprint>
<date when="2006">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of physics. D, Applied physics : (Print)</title>
<title level="j" type="abbreviated">J. phys., D. Appl. phys. : (Print)</title>
<idno type="ISSN">0022-3727</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Annealing</term>
<term>Cobalt alloys</term>
<term>Coercive force</term>
<term>Electrodeposition</term>
<term>FCC lattices</term>
<term>Heat treatments</term>
<term>Iron alloys</term>
<term>Magnetic properties</term>
<term>Magnetization</term>
<term>Nanowires</term>
<term>Phase transformations</term>
<term>Platinum alloys</term>
<term>Soft magnetic materials</term>
<term>Tetragonal lattices</term>
<term>Transition element alloys</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Propriété magnétique</term>
<term>Dépôt électrolytique</term>
<term>Traitement thermique</term>
<term>Recuit</term>
<term>Force coercitive</term>
<term>Transformation phase</term>
<term>Aimantation</term>
<term>Fer alliage</term>
<term>Nanofil</term>
<term>Réseau cubique face centrée</term>
<term>Réseau quadratique</term>
<term>Matériau magnétique doux</term>
<term>Cobalt alliage</term>
<term>Platine alliage</term>
<term>Métal transition alliage</term>
<term>7575</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">CoPt and FePt nanowire arrays were successfully prepared by electrodeposition into nanochannels of porous alumina membranes. The as-deposited CoPt alloy has a face centred cubic structure and displays soft magnetic properties. Heat treatment at 700 °C for different durations, under vacuum condition was carried out in order to obtain the ordered face centred tetragonal phase L1
<sub>0</sub>
, exhibiting hard magnetic properties. After annealing, arrays of nanowires actually show hard magnetic properties with coercive fields up to 1.1 T at room temperature. Phase transformation, structural and magnetic properties were analysed and necessary conditions to obtain optimum magnetic properties are concluded. The first results obtained with FePt nanowires denote a more complicated system since the as-deposited material shows no magnetization. Magnetism appears only after annealing at 700 °C minimum. Coercivity up to 1.1 T has been obtained at room temperature but with inhomogeneous phase composition.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-3727</s0>
</fA01>
<fA02 i1="01">
<s0>JPAPBE</s0>
</fA02>
<fA03 i2="1">
<s0>J. phys., D. Appl. phys. : (Print)</s0>
</fA03>
<fA05>
<s2>39</s2>
</fA05>
<fA06>
<s2>21</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Magnetic and structural properties of electrodeposited CoPt and FePt nanowires in nanoporous alumina templates</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>DAHMANE (Y.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CAGNON (L.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>VOIRON (J.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>PAIRIS (S.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>BACIA (M.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>ORTEGA (L.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>BENBRAHIM (N.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>KADRI (A.)</s1>
</fA11>
<fA14 i1="01">
<s1>Laboratoire Louis Néel, CNRS, BP 166</s1>
<s2>38042 Grenoble</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Laboratoire de Matériaux, Electrochimie et Corrosion, BP 17</s1>
<s2>15000 Tizi-Ouzou</s2>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Laboratoire de Cristallographie, CNRS, BP 166</s1>
<s2>38042 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>4523-4528</s1>
</fA20>
<fA21>
<s1>2006</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>5841</s2>
<s5>354000139174720030</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2006 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>28 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>06-0542437</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of physics. D, Applied physics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>CoPt and FePt nanowire arrays were successfully prepared by electrodeposition into nanochannels of porous alumina membranes. The as-deposited CoPt alloy has a face centred cubic structure and displays soft magnetic properties. Heat treatment at 700 °C for different durations, under vacuum condition was carried out in order to obtain the ordered face centred tetragonal phase L1
<sub>0</sub>
, exhibiting hard magnetic properties. After annealing, arrays of nanowires actually show hard magnetic properties with coercive fields up to 1.1 T at room temperature. Phase transformation, structural and magnetic properties were analysed and necessary conditions to obtain optimum magnetic properties are concluded. The first results obtained with FePt nanowires denote a more complicated system since the as-deposited material shows no magnetization. Magnetism appears only after annealing at 700 °C minimum. Coercivity up to 1.1 T has been obtained at room temperature but with inhomogeneous phase composition.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70E75</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Propriété magnétique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Magnetic properties</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Dépôt électrolytique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Electrodeposition</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Traitement thermique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Heat treatments</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Recuit</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Annealing</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Force coercitive</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Coercive force</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Transformation phase</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Phase transformations</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Aimantation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Magnetization</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Fer alliage</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Iron alloys</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Nanofil</s0>
<s5>15</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Nanowires</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Réseau cubique face centrée</s0>
<s5>16</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>FCC lattices</s0>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Réseau quadratique</s0>
<s5>17</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Tetragonal lattices</s0>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Matériau magnétique doux</s0>
<s5>19</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Soft magnetic materials</s0>
<s5>19</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Cobalt alliage</s0>
<s5>20</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Cobalt alloys</s0>
<s5>20</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Platine alliage</s0>
<s5>21</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Platinum alloys</s0>
<s5>21</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Métal transition alliage</s0>
<s5>48</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Transition element alloys</s0>
<s5>48</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>7575</s0>
<s4>INC</s4>
<s5>62</s5>
</fC03>
<fN21>
<s1>353</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 06-0542437 INIST</NO>
<ET>Magnetic and structural properties of electrodeposited CoPt and FePt nanowires in nanoporous alumina templates</ET>
<AU>DAHMANE (Y.); CAGNON (L.); VOIRON (J.); PAIRIS (S.); BACIA (M.); ORTEGA (L.); BENBRAHIM (N.); KADRI (A.)</AU>
<AF>Laboratoire Louis Néel, CNRS, BP 166/38042 Grenoble/France (1 aut., 3 aut.); Laboratoire de Matériaux, Electrochimie et Corrosion, BP 17/15000 Tizi-Ouzou/Algérie (1 aut., 7 aut., 8 aut.); Laboratoire de Cristallographie, CNRS, BP 166/38042 Grenoble/France (2 aut., 4 aut., 5 aut., 6 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of physics. D, Applied physics : (Print); ISSN 0022-3727; Coden JPAPBE; Royaume-Uni; Da. 2006; Vol. 39; No. 21; Pp. 4523-4528; Bibl. 28 ref.</SO>
<LA>Anglais</LA>
<EA>CoPt and FePt nanowire arrays were successfully prepared by electrodeposition into nanochannels of porous alumina membranes. The as-deposited CoPt alloy has a face centred cubic structure and displays soft magnetic properties. Heat treatment at 700 °C for different durations, under vacuum condition was carried out in order to obtain the ordered face centred tetragonal phase L1
<sub>0</sub>
, exhibiting hard magnetic properties. After annealing, arrays of nanowires actually show hard magnetic properties with coercive fields up to 1.1 T at room temperature. Phase transformation, structural and magnetic properties were analysed and necessary conditions to obtain optimum magnetic properties are concluded. The first results obtained with FePt nanowires denote a more complicated system since the as-deposited material shows no magnetization. Magnetism appears only after annealing at 700 °C minimum. Coercivity up to 1.1 T has been obtained at room temperature but with inhomogeneous phase composition.</EA>
<CC>001B70E75</CC>
<FD>Propriété magnétique; Dépôt électrolytique; Traitement thermique; Recuit; Force coercitive; Transformation phase; Aimantation; Fer alliage; Nanofil; Réseau cubique face centrée; Réseau quadratique; Matériau magnétique doux; Cobalt alliage; Platine alliage; Métal transition alliage; 7575</FD>
<ED>Magnetic properties; Electrodeposition; Heat treatments; Annealing; Coercive force; Phase transformations; Magnetization; Iron alloys; Nanowires; FCC lattices; Tetragonal lattices; Soft magnetic materials; Cobalt alloys; Platinum alloys; Transition element alloys</ED>
<LO>INIST-5841.354000139174720030</LO>
<ID>06-0542437</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000155 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000155 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:06-0542437
   |texte=   Magnetic and structural properties of electrodeposited CoPt and FePt nanowires in nanoporous alumina templates
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024