Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Simple approach to prepare mesoporous silica supported mixed-oxide nanoparticles by in situ autocombustion procedure

Identifieur interne : 000077 ( PascalFrancis/Corpus ); précédent : 000076; suivant : 000078

Simple approach to prepare mesoporous silica supported mixed-oxide nanoparticles by in situ autocombustion procedure

Auteurs : D. Sellam ; M. Bonne ; S. Arrii-Clacens ; G. Lafaye ; N. Bion ; S. Tezkratt ; S. Royer ; P. Marecot ; D. Duprez

Source :

RBID : Pascal:11-0054630

Descripteurs français

English descriptors

Abstract

LaCo03-based nanocomposites were prepared by an in situ autocombustion procedure of a glycine-nitrate complex in mesoporous silica supports. For this purpose, two silica supports with different pore sizes (3.0nm for the HMS-type silica; 8.2 nm for the SBA15-type silica) were prepared. The final materials were characterized using XRD, TEM, N2-sorption and reactivities evaluated using oxygen isotopic exchange (OIE). One interesting point is the limited pore plugging, due to the low particle size obtained, when synthesis is specifically performed in large pore silica support (SBA15), as suggested by the limited pore volume decrease with respect to the HMS-based system. TEM coupled with EDXS analyses suggest the formation of crystalline mixed-oxide nanoparticles which have been observed with a cobalt to lanthanum ratio always close to 1. These nanoparticles exhibit high oxygen exchange capacity (1.2-2.3 times higher exchange capacities after 60 min of reaction), albeit a lower initial rate of exchange compared to the bulk reference sample (due to residual carbonate exchange). At the light of these results, it has been concluded that this method is efficient for producing nanocrystalline particles dispersed in silica pore structure.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0920-5861
A02 01      @0 CATTEA
A03   1    @0 Catal. today : (Print)
A05       @2 157
A06       @2 1-4
A08 01  1  ENG  @1 Simple approach to prepare mesoporous silica supported mixed-oxide nanoparticles by in situ autocombustion procedure
A09 01  1  ENG  @1 Towards an integrated approach in innovation and development
A11 01  1    @1 SELLAM (D.)
A11 02  1    @1 BONNE (M.)
A11 03  1    @1 ARRII-CLACENS (S.)
A11 04  1    @1 LAFAYE (G.)
A11 05  1    @1 BION (N.)
A11 06  1    @1 TEZKRATT (S.)
A11 07  1    @1 ROYER (S.)
A11 08  1    @1 MARECOT (P.)
A11 09  1    @1 DUPREZ (D.)
A12 01  1    @1 BORDES-RICHARD (Elisabeth) @9 ed.
A12 02  1    @1 GAIGNEAUX (Eric M.) @9 ed.
A12 03  1    @1 LÖFBERG (Axel) @9 ed.
A12 04  1    @1 PAYEN (Edmond) @9 ed.
A12 05  1    @1 RUIZ (Patricio) @9 ed.
A14 01      @1 Université de Poitiers, LACCO UMR 6503 CNRS, 40 avenue du recteur Pineau @2 86022 Poitiers @3 FRA @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut. @Z 5 aut. @Z 7 aut. @Z 8 aut. @Z 9 aut.
A14 02      @1 LCAGC, Hasnaoua 1, Université Mouloud Mammeri @2 Tizi Ouzou 15000 @3 DZA @Z 1 aut. @Z 6 aut.
A15 01      @1 Université de Lille 1, Unité de Catalyse et de Chimie du Solide (UMR CNRS 8181), Bât. C3 @2 59655 Villeneuve d'Ascq @3 FRA @Z 1 aut. @Z 3 aut. @Z 4 aut.
A15 02      @1 Université catholique de Louvain, Institute of Condensed Matter and Nanosciences (IMCN), Division "MOlecules, Solids and reactiviTy - MOST", Croix du Sud 2/17 @2 1348 Louvain-la-Neuve @3 BEL @Z 2 aut. @Z 5 aut.
A18 01  1    @1 Centre National de la Recherche Scientifique @3 FRA @9 org-cong.
A18 02  1    @1 Fonds de la Recherche Scientifique and Fonds Wetenschappelijk Onderzoek @2 Vlaanderen @3 BEL @9 org-cong.
A18 03  1    @1 Société chimique de France @3 FRA @9 org-cong.
A18 04  1    @1 Société royale de Chimie @3 BEL @9 org-cong.
A18 05  1    @1 European Network of Excellence IDECAT (Integrated Design of Catalytic Materials for a Sustainable Production) @3 EUR @9 org-cong.
A18 06  1    @1 European Federation of Biotechnology @3 EUR @9 org-cong.
A20       @1 131-136
A21       @1 2010
A23 01      @0 ENG
A43 01      @1 INIST @2 21357 @5 354000191399150220
A44       @0 0000 @1 © 2011 INIST-CNRS. All rights reserved.
A45       @0 33 ref.
A47 01  1    @0 11-0054630
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Catalysis today : (Print)
A66 01      @0 NLD
C01 01    ENG  @0 LaCo03-based nanocomposites were prepared by an in situ autocombustion procedure of a glycine-nitrate complex in mesoporous silica supports. For this purpose, two silica supports with different pore sizes (3.0nm for the HMS-type silica; 8.2 nm for the SBA15-type silica) were prepared. The final materials were characterized using XRD, TEM, N2-sorption and reactivities evaluated using oxygen isotopic exchange (OIE). One interesting point is the limited pore plugging, due to the low particle size obtained, when synthesis is specifically performed in large pore silica support (SBA15), as suggested by the limited pore volume decrease with respect to the HMS-based system. TEM coupled with EDXS analyses suggest the formation of crystalline mixed-oxide nanoparticles which have been observed with a cobalt to lanthanum ratio always close to 1. These nanoparticles exhibit high oxygen exchange capacity (1.2-2.3 times higher exchange capacities after 60 min of reaction), albeit a lower initial rate of exchange compared to the bulk reference sample (due to residual carbonate exchange). At the light of these results, it has been concluded that this method is efficient for producing nanocrystalline particles dispersed in silica pore structure.
C02 01  X    @0 001C01A03
C02 02  X    @0 001C01J08
C02 03  X    @0 001C01J02
C02 04  X    @0 001C01I
C03 01  X  FRE  @0 Mésoporosité @5 01
C03 01  X  ENG  @0 Mesoporosity @5 01
C03 01  X  SPA  @0 Mesoporosidad @5 01
C03 02  X  FRE  @0 Matériau poreux @5 02
C03 02  X  ENG  @0 Porous material @5 02
C03 02  X  SPA  @0 Material poroso @5 02
C03 03  X  FRE  @0 Silice @2 NK @2 FX @5 03
C03 03  X  ENG  @0 Silica @2 NK @2 FX @5 03
C03 03  X  SPA  @0 Sílice @2 NK @2 FX @5 03
C03 04  X  FRE  @0 Support @5 04
C03 04  X  ENG  @0 Support @5 04
C03 04  X  SPA  @0 Soporte @5 04
C03 05  X  FRE  @0 Oxyde @2 NA @5 05
C03 05  X  ENG  @0 Oxides @2 NA @5 05
C03 05  X  SPA  @0 Óxido @2 NA @5 05
C03 06  X  FRE  @0 Nanoparticule @5 06
C03 06  X  ENG  @0 Nanoparticle @5 06
C03 06  X  SPA  @0 Nanopartícula @5 06
C03 07  X  FRE  @0 In situ @5 07
C03 07  X  ENG  @0 In situ @5 07
C03 07  X  SPA  @0 In situ @5 07
C03 08  X  FRE  @0 Perovskites @5 08
C03 08  X  ENG  @0 Perovskite type compound @5 08
C03 08  X  SPA  @0 Perovskitas @5 08
C03 09  X  FRE  @0 Oxygène @2 NC @2 FX @5 09
C03 09  X  ENG  @0 Oxygen @2 NC @2 FX @5 09
C03 09  X  SPA  @0 Oxígeno @2 NC @2 FX @5 09
C03 10  X  FRE  @0 Mobilité @5 10
C03 10  X  ENG  @0 Mobility @5 10
C03 10  X  SPA  @0 Movilidad @5 10
C03 11  X  FRE  @0 Catalyse hétérogène @5 11
C03 11  X  ENG  @0 Heterogeneous catalysis @5 11
C03 11  X  SPA  @0 Catálisis heterogénea @5 11
C03 12  X  FRE  @0 Oxydation @5 12
C03 12  X  ENG  @0 Oxidation @5 12
C03 12  X  SPA  @0 Oxidación @5 12
C03 13  X  FRE  @0 Nanocomposite @5 14
C03 13  X  ENG  @0 Nanocomposite @5 14
C03 13  X  SPA  @0 Nanocompuesto @5 14
C03 14  X  FRE  @0 Glycine @2 NK @2 FR @5 15
C03 14  X  ENG  @0 Glycine @2 NK @2 FR @5 15
C03 14  X  SPA  @0 Glicina @2 NK @2 FR @5 15
C03 15  X  FRE  @0 Nitrate @2 NA @2 FX @5 16
C03 15  X  ENG  @0 Nitrates @2 NA @2 FX @5 16
C03 15  X  SPA  @0 Nitrato @2 NA @2 FX @5 16
C03 16  X  FRE  @0 Complexe @2 NA @5 17
C03 16  X  ENG  @0 Complexes @2 NA @5 17
C03 16  X  SPA  @0 Complejo @2 NA @5 17
C03 17  X  FRE  @0 Dimension pore @5 18
C03 17  X  ENG  @0 Pore size @5 18
C03 17  X  SPA  @0 Dimensión poro @5 18
C03 18  X  FRE  @0 Diffraction RX @5 19
C03 18  X  ENG  @0 X ray diffraction @5 19
C03 18  X  SPA  @0 Difracción RX @5 19
C03 19  X  FRE  @0 Microscopie électronique transmission @5 20
C03 19  X  ENG  @0 Transmission electron microscopy @5 20
C03 19  X  SPA  @0 Microscopía electrónica transmisión @5 20
C03 20  X  FRE  @0 Sorption @5 21
C03 20  X  ENG  @0 Sorption @5 21
C03 20  X  SPA  @0 Sorción @5 21
C03 21  X  FRE  @0 Adsorption @5 22
C03 21  X  ENG  @0 Adsorption @5 22
C03 21  X  SPA  @0 Adsorción @5 22
C03 22  X  FRE  @0 Réactivité chimique @5 23
C03 22  X  ENG  @0 Chemical reactivity @5 23
C03 22  X  SPA  @0 Reactividad química @5 23
C03 23  X  FRE  @0 Echange isotopique @5 24
C03 23  X  ENG  @0 Isotope exchange @5 24
C03 23  X  SPA  @0 Intercambio isotópico @5 24
C03 24  X  FRE  @0 Pore @5 25
C03 24  X  ENG  @0 Pore @5 25
C03 24  X  SPA  @0 Poro @5 25
C03 25  X  FRE  @0 Colmatage @5 26
C03 25  X  ENG  @0 Plugging @5 26
C03 25  X  SPA  @0 Taponamiento @5 26
C03 26  X  FRE  @0 Dimension particule @5 27
C03 26  X  ENG  @0 Particle size @5 27
C03 26  X  SPA  @0 Dimensión partícula @5 27
C03 27  X  FRE  @0 Synthèse @5 28
C03 27  X  ENG  @0 Synthesis @5 28
C03 27  X  SPA  @0 Síntesis @5 28
C03 28  X  FRE  @0 Cobalt @2 NC @5 29
C03 28  X  ENG  @0 Cobalt @2 NC @5 29
C03 28  X  SPA  @0 Cobalto @2 NC @5 29
C03 29  X  FRE  @0 Lanthane @2 NC @5 30
C03 29  X  ENG  @0 Lanthanum @2 NC @5 30
C03 29  X  SPA  @0 Lantano @2 NC @5 30
C03 30  X  FRE  @0 SiO2 @4 INC @5 32
C07 01  X  FRE  @0 Composé binaire @5 13
C07 01  X  ENG  @0 Binary compound @5 13
C07 01  X  SPA  @0 Compuesto binario @5 13
N21       @1 038
N44 01      @1 OTO
N82       @1 OTO
pR  
A30 01  1  ENG  @1 World Congress on Oxidation Catalysis (6WCOC) @2 6 @3 Lille FRA @4 2009-07-05

Format Inist (serveur)

NO : PASCAL 11-0054630 INIST
ET : Simple approach to prepare mesoporous silica supported mixed-oxide nanoparticles by in situ autocombustion procedure
AU : SELLAM (D.); BONNE (M.); ARRII-CLACENS (S.); LAFAYE (G.); BION (N.); TEZKRATT (S.); ROYER (S.); MARECOT (P.); DUPREZ (D.); BORDES-RICHARD (Elisabeth); GAIGNEAUX (Eric M.); LÖFBERG (Axel); PAYEN (Edmond); RUIZ (Patricio)
AF : Université de Poitiers, LACCO UMR 6503 CNRS, 40 avenue du recteur Pineau/86022 Poitiers/France (1 aut., 2 aut., 3 aut., 4 aut., 5 aut., 7 aut., 8 aut., 9 aut.); LCAGC, Hasnaoua 1, Université Mouloud Mammeri/Tizi Ouzou 15000/Algérie (1 aut., 6 aut.); Université de Lille 1, Unité de Catalyse et de Chimie du Solide (UMR CNRS 8181), Bât. C3/59655 Villeneuve d'Ascq/France (1 aut., 3 aut., 4 aut.); Université catholique de Louvain, Institute of Condensed Matter and Nanosciences (IMCN), Division "MOlecules, Solids and reactiviTy - MOST", Croix du Sud 2/17/1348 Louvain-la-Neuve/Belgique (2 aut., 5 aut.)
DT : Publication en série; Congrès; Niveau analytique
SO : Catalysis today : (Print); ISSN 0920-5861; Coden CATTEA; Pays-Bas; Da. 2010; Vol. 157; No. 1-4; Pp. 131-136; Bibl. 33 ref.
LA : Anglais
EA : LaCo03-based nanocomposites were prepared by an in situ autocombustion procedure of a glycine-nitrate complex in mesoporous silica supports. For this purpose, two silica supports with different pore sizes (3.0nm for the HMS-type silica; 8.2 nm for the SBA15-type silica) were prepared. The final materials were characterized using XRD, TEM, N2-sorption and reactivities evaluated using oxygen isotopic exchange (OIE). One interesting point is the limited pore plugging, due to the low particle size obtained, when synthesis is specifically performed in large pore silica support (SBA15), as suggested by the limited pore volume decrease with respect to the HMS-based system. TEM coupled with EDXS analyses suggest the formation of crystalline mixed-oxide nanoparticles which have been observed with a cobalt to lanthanum ratio always close to 1. These nanoparticles exhibit high oxygen exchange capacity (1.2-2.3 times higher exchange capacities after 60 min of reaction), albeit a lower initial rate of exchange compared to the bulk reference sample (due to residual carbonate exchange). At the light of these results, it has been concluded that this method is efficient for producing nanocrystalline particles dispersed in silica pore structure.
CC : 001C01A03; 001C01J08; 001C01J02; 001C01I
FD : Mésoporosité; Matériau poreux; Silice; Support; Oxyde; Nanoparticule; In situ; Perovskites; Oxygène; Mobilité; Catalyse hétérogène; Oxydation; Nanocomposite; Glycine; Nitrate; Complexe; Dimension pore; Diffraction RX; Microscopie électronique transmission; Sorption; Adsorption; Réactivité chimique; Echange isotopique; Pore; Colmatage; Dimension particule; Synthèse; Cobalt; Lanthane; SiO2
FG : Composé binaire
ED : Mesoporosity; Porous material; Silica; Support; Oxides; Nanoparticle; In situ; Perovskite type compound; Oxygen; Mobility; Heterogeneous catalysis; Oxidation; Nanocomposite; Glycine; Nitrates; Complexes; Pore size; X ray diffraction; Transmission electron microscopy; Sorption; Adsorption; Chemical reactivity; Isotope exchange; Pore; Plugging; Particle size; Synthesis; Cobalt; Lanthanum
EG : Binary compound
SD : Mesoporosidad; Material poroso; Sílice; Soporte; Óxido; Nanopartícula; In situ; Perovskitas; Oxígeno; Movilidad; Catálisis heterogénea; Oxidación; Nanocompuesto; Glicina; Nitrato; Complejo; Dimensión poro; Difracción RX; Microscopía electrónica transmisión; Sorción; Adsorción; Reactividad química; Intercambio isotópico; Poro; Taponamiento; Dimensión partícula; Síntesis; Cobalto; Lantano
LO : INIST-21357.354000191399150220
ID : 11-0054630

Links to Exploration step

Pascal:11-0054630

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Simple approach to prepare mesoporous silica supported mixed-oxide nanoparticles by in situ autocombustion procedure</title>
<author>
<name sortKey="Sellam, D" sort="Sellam, D" uniqKey="Sellam D" first="D." last="Sellam">D. Sellam</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Université de Poitiers, LACCO UMR 6503 CNRS, 40 avenue du recteur Pineau</s1>
<s2>86022 Poitiers</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>LCAGC, Hasnaoua 1, Université Mouloud Mammeri</s1>
<s2>Tizi Ouzou 15000</s2>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bonne, M" sort="Bonne, M" uniqKey="Bonne M" first="M." last="Bonne">M. Bonne</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Université de Poitiers, LACCO UMR 6503 CNRS, 40 avenue du recteur Pineau</s1>
<s2>86022 Poitiers</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Arrii Clacens, S" sort="Arrii Clacens, S" uniqKey="Arrii Clacens S" first="S." last="Arrii-Clacens">S. Arrii-Clacens</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Université de Poitiers, LACCO UMR 6503 CNRS, 40 avenue du recteur Pineau</s1>
<s2>86022 Poitiers</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lafaye, G" sort="Lafaye, G" uniqKey="Lafaye G" first="G." last="Lafaye">G. Lafaye</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Université de Poitiers, LACCO UMR 6503 CNRS, 40 avenue du recteur Pineau</s1>
<s2>86022 Poitiers</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bion, N" sort="Bion, N" uniqKey="Bion N" first="N." last="Bion">N. Bion</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Université de Poitiers, LACCO UMR 6503 CNRS, 40 avenue du recteur Pineau</s1>
<s2>86022 Poitiers</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Tezkratt, S" sort="Tezkratt, S" uniqKey="Tezkratt S" first="S." last="Tezkratt">S. Tezkratt</name>
<affiliation>
<inist:fA14 i1="02">
<s1>LCAGC, Hasnaoua 1, Université Mouloud Mammeri</s1>
<s2>Tizi Ouzou 15000</s2>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Royer, S" sort="Royer, S" uniqKey="Royer S" first="S." last="Royer">S. Royer</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Université de Poitiers, LACCO UMR 6503 CNRS, 40 avenue du recteur Pineau</s1>
<s2>86022 Poitiers</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Marecot, P" sort="Marecot, P" uniqKey="Marecot P" first="P." last="Marecot">P. Marecot</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Université de Poitiers, LACCO UMR 6503 CNRS, 40 avenue du recteur Pineau</s1>
<s2>86022 Poitiers</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Duprez, D" sort="Duprez, D" uniqKey="Duprez D" first="D." last="Duprez">D. Duprez</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Université de Poitiers, LACCO UMR 6503 CNRS, 40 avenue du recteur Pineau</s1>
<s2>86022 Poitiers</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">11-0054630</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 11-0054630 INIST</idno>
<idno type="RBID">Pascal:11-0054630</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000077</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Simple approach to prepare mesoporous silica supported mixed-oxide nanoparticles by in situ autocombustion procedure</title>
<author>
<name sortKey="Sellam, D" sort="Sellam, D" uniqKey="Sellam D" first="D." last="Sellam">D. Sellam</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Université de Poitiers, LACCO UMR 6503 CNRS, 40 avenue du recteur Pineau</s1>
<s2>86022 Poitiers</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>LCAGC, Hasnaoua 1, Université Mouloud Mammeri</s1>
<s2>Tizi Ouzou 15000</s2>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bonne, M" sort="Bonne, M" uniqKey="Bonne M" first="M." last="Bonne">M. Bonne</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Université de Poitiers, LACCO UMR 6503 CNRS, 40 avenue du recteur Pineau</s1>
<s2>86022 Poitiers</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Arrii Clacens, S" sort="Arrii Clacens, S" uniqKey="Arrii Clacens S" first="S." last="Arrii-Clacens">S. Arrii-Clacens</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Université de Poitiers, LACCO UMR 6503 CNRS, 40 avenue du recteur Pineau</s1>
<s2>86022 Poitiers</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lafaye, G" sort="Lafaye, G" uniqKey="Lafaye G" first="G." last="Lafaye">G. Lafaye</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Université de Poitiers, LACCO UMR 6503 CNRS, 40 avenue du recteur Pineau</s1>
<s2>86022 Poitiers</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bion, N" sort="Bion, N" uniqKey="Bion N" first="N." last="Bion">N. Bion</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Université de Poitiers, LACCO UMR 6503 CNRS, 40 avenue du recteur Pineau</s1>
<s2>86022 Poitiers</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Tezkratt, S" sort="Tezkratt, S" uniqKey="Tezkratt S" first="S." last="Tezkratt">S. Tezkratt</name>
<affiliation>
<inist:fA14 i1="02">
<s1>LCAGC, Hasnaoua 1, Université Mouloud Mammeri</s1>
<s2>Tizi Ouzou 15000</s2>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Royer, S" sort="Royer, S" uniqKey="Royer S" first="S." last="Royer">S. Royer</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Université de Poitiers, LACCO UMR 6503 CNRS, 40 avenue du recteur Pineau</s1>
<s2>86022 Poitiers</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Marecot, P" sort="Marecot, P" uniqKey="Marecot P" first="P." last="Marecot">P. Marecot</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Université de Poitiers, LACCO UMR 6503 CNRS, 40 avenue du recteur Pineau</s1>
<s2>86022 Poitiers</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Duprez, D" sort="Duprez, D" uniqKey="Duprez D" first="D." last="Duprez">D. Duprez</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Université de Poitiers, LACCO UMR 6503 CNRS, 40 avenue du recteur Pineau</s1>
<s2>86022 Poitiers</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Catalysis today : (Print)</title>
<title level="j" type="abbreviated">Catal. today : (Print)</title>
<idno type="ISSN">0920-5861</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Catalysis today : (Print)</title>
<title level="j" type="abbreviated">Catal. today : (Print)</title>
<idno type="ISSN">0920-5861</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adsorption</term>
<term>Chemical reactivity</term>
<term>Cobalt</term>
<term>Complexes</term>
<term>Glycine</term>
<term>Heterogeneous catalysis</term>
<term>In situ</term>
<term>Isotope exchange</term>
<term>Lanthanum</term>
<term>Mesoporosity</term>
<term>Mobility</term>
<term>Nanocomposite</term>
<term>Nanoparticle</term>
<term>Nitrates</term>
<term>Oxidation</term>
<term>Oxides</term>
<term>Oxygen</term>
<term>Particle size</term>
<term>Perovskite type compound</term>
<term>Plugging</term>
<term>Pore</term>
<term>Pore size</term>
<term>Porous material</term>
<term>Silica</term>
<term>Sorption</term>
<term>Support</term>
<term>Synthesis</term>
<term>Transmission electron microscopy</term>
<term>X ray diffraction</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Mésoporosité</term>
<term>Matériau poreux</term>
<term>Silice</term>
<term>Support</term>
<term>Oxyde</term>
<term>Nanoparticule</term>
<term>In situ</term>
<term>Perovskites</term>
<term>Oxygène</term>
<term>Mobilité</term>
<term>Catalyse hétérogène</term>
<term>Oxydation</term>
<term>Nanocomposite</term>
<term>Glycine</term>
<term>Nitrate</term>
<term>Complexe</term>
<term>Dimension pore</term>
<term>Diffraction RX</term>
<term>Microscopie électronique transmission</term>
<term>Sorption</term>
<term>Adsorption</term>
<term>Réactivité chimique</term>
<term>Echange isotopique</term>
<term>Pore</term>
<term>Colmatage</term>
<term>Dimension particule</term>
<term>Synthèse</term>
<term>Cobalt</term>
<term>Lanthane</term>
<term>SiO2</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">LaCo0
<sub>3</sub>
-based nanocomposites were prepared by an in situ autocombustion procedure of a glycine-nitrate complex in mesoporous silica supports. For this purpose, two silica supports with different pore sizes (3.0nm for the HMS-type silica; 8.2 nm for the SBA15-type silica) were prepared. The final materials were characterized using XRD, TEM, N
<sub>2</sub>
-sorption and reactivities evaluated using oxygen isotopic exchange (OIE). One interesting point is the limited pore plugging, due to the low particle size obtained, when synthesis is specifically performed in large pore silica support (SBA15), as suggested by the limited pore volume decrease with respect to the HMS-based system. TEM coupled with EDXS analyses suggest the formation of crystalline mixed-oxide nanoparticles which have been observed with a cobalt to lanthanum ratio always close to 1. These nanoparticles exhibit high oxygen exchange capacity (1.2-2.3 times higher exchange capacities after 60 min of reaction), albeit a lower initial rate of exchange compared to the bulk reference sample (due to residual carbonate exchange). At the light of these results, it has been concluded that this method is efficient for producing nanocrystalline particles dispersed in silica pore structure.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0920-5861</s0>
</fA01>
<fA02 i1="01">
<s0>CATTEA</s0>
</fA02>
<fA03 i2="1">
<s0>Catal. today : (Print)</s0>
</fA03>
<fA05>
<s2>157</s2>
</fA05>
<fA06>
<s2>1-4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Simple approach to prepare mesoporous silica supported mixed-oxide nanoparticles by in situ autocombustion procedure</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Towards an integrated approach in innovation and development</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>SELLAM (D.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BONNE (M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ARRII-CLACENS (S.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>LAFAYE (G.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>BION (N.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>TEZKRATT (S.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>ROYER (S.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>MARECOT (P.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>DUPREZ (D.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>BORDES-RICHARD (Elisabeth)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>GAIGNEAUX (Eric M.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>LÖFBERG (Axel)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>PAYEN (Edmond)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="05" i2="1">
<s1>RUIZ (Patricio)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Université de Poitiers, LACCO UMR 6503 CNRS, 40 avenue du recteur Pineau</s1>
<s2>86022 Poitiers</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>LCAGC, Hasnaoua 1, Université Mouloud Mammeri</s1>
<s2>Tizi Ouzou 15000</s2>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Université de Lille 1, Unité de Catalyse et de Chimie du Solide (UMR CNRS 8181), Bât. C3</s1>
<s2>59655 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Université catholique de Louvain, Institute of Condensed Matter and Nanosciences (IMCN), Division "MOlecules, Solids and reactiviTy - MOST", Croix du Sud 2/17</s1>
<s2>1348 Louvain-la-Neuve</s2>
<s3>BEL</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</fA15>
<fA18 i1="01" i2="1">
<s1>Centre National de la Recherche Scientifique</s1>
<s3>FRA</s3>
<s9>org-cong.</s9>
</fA18>
<fA18 i1="02" i2="1">
<s1>Fonds de la Recherche Scientifique and Fonds Wetenschappelijk Onderzoek</s1>
<s2>Vlaanderen</s2>
<s3>BEL</s3>
<s9>org-cong.</s9>
</fA18>
<fA18 i1="03" i2="1">
<s1>Société chimique de France</s1>
<s3>FRA</s3>
<s9>org-cong.</s9>
</fA18>
<fA18 i1="04" i2="1">
<s1>Société royale de Chimie</s1>
<s3>BEL</s3>
<s9>org-cong.</s9>
</fA18>
<fA18 i1="05" i2="1">
<s1>European Network of Excellence IDECAT (Integrated Design of Catalytic Materials for a Sustainable Production)</s1>
<s3>EUR</s3>
<s9>org-cong.</s9>
</fA18>
<fA18 i1="06" i2="1">
<s1>European Federation of Biotechnology</s1>
<s3>EUR</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s1>131-136</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21357</s2>
<s5>354000191399150220</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>33 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0054630</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Catalysis today : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>LaCo0
<sub>3</sub>
-based nanocomposites were prepared by an in situ autocombustion procedure of a glycine-nitrate complex in mesoporous silica supports. For this purpose, two silica supports with different pore sizes (3.0nm for the HMS-type silica; 8.2 nm for the SBA15-type silica) were prepared. The final materials were characterized using XRD, TEM, N
<sub>2</sub>
-sorption and reactivities evaluated using oxygen isotopic exchange (OIE). One interesting point is the limited pore plugging, due to the low particle size obtained, when synthesis is specifically performed in large pore silica support (SBA15), as suggested by the limited pore volume decrease with respect to the HMS-based system. TEM coupled with EDXS analyses suggest the formation of crystalline mixed-oxide nanoparticles which have been observed with a cobalt to lanthanum ratio always close to 1. These nanoparticles exhibit high oxygen exchange capacity (1.2-2.3 times higher exchange capacities after 60 min of reaction), albeit a lower initial rate of exchange compared to the bulk reference sample (due to residual carbonate exchange). At the light of these results, it has been concluded that this method is efficient for producing nanocrystalline particles dispersed in silica pore structure.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001C01A03</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001C01J08</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001C01J02</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001C01I</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Mésoporosité</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Mesoporosity</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Mesoporosidad</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Matériau poreux</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Porous material</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Material poroso</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Silice</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Silica</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Sílice</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Support</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Support</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Soporte</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Oxyde</s0>
<s2>NA</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Oxides</s0>
<s2>NA</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Óxido</s0>
<s2>NA</s2>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Nanoparticule</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Nanoparticle</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Nanopartícula</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>In situ</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>In situ</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>In situ</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Perovskites</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Perovskite type compound</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Perovskitas</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Oxygène</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Oxygen</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Oxígeno</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Mobilité</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Mobility</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Movilidad</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Catalyse hétérogène</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Heterogeneous catalysis</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Catálisis heterogénea</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Oxydation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Oxidation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Oxidación</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Nanocomposite</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Nanocomposite</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Nanocompuesto</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Glycine</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Glycine</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Glicina</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Nitrate</s0>
<s2>NA</s2>
<s2>FX</s2>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Nitrates</s0>
<s2>NA</s2>
<s2>FX</s2>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Nitrato</s0>
<s2>NA</s2>
<s2>FX</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Complexe</s0>
<s2>NA</s2>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Complexes</s0>
<s2>NA</s2>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Complejo</s0>
<s2>NA</s2>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Dimension pore</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Pore size</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Dimensión poro</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Diffraction RX</s0>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>X ray diffraction</s0>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Difracción RX</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Microscopie électronique transmission</s0>
<s5>20</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Transmission electron microscopy</s0>
<s5>20</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Microscopía electrónica transmisión</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Sorption</s0>
<s5>21</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Sorption</s0>
<s5>21</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Sorción</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Adsorption</s0>
<s5>22</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Adsorption</s0>
<s5>22</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Adsorción</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Réactivité chimique</s0>
<s5>23</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Chemical reactivity</s0>
<s5>23</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Reactividad química</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Echange isotopique</s0>
<s5>24</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Isotope exchange</s0>
<s5>24</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Intercambio isotópico</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Pore</s0>
<s5>25</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Pore</s0>
<s5>25</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Poro</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Colmatage</s0>
<s5>26</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Plugging</s0>
<s5>26</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Taponamiento</s0>
<s5>26</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Dimension particule</s0>
<s5>27</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Particle size</s0>
<s5>27</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Dimensión partícula</s0>
<s5>27</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Synthèse</s0>
<s5>28</s5>
</fC03>
<fC03 i1="27" i2="X" l="ENG">
<s0>Synthesis</s0>
<s5>28</s5>
</fC03>
<fC03 i1="27" i2="X" l="SPA">
<s0>Síntesis</s0>
<s5>28</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>Cobalt</s0>
<s2>NC</s2>
<s5>29</s5>
</fC03>
<fC03 i1="28" i2="X" l="ENG">
<s0>Cobalt</s0>
<s2>NC</s2>
<s5>29</s5>
</fC03>
<fC03 i1="28" i2="X" l="SPA">
<s0>Cobalto</s0>
<s2>NC</s2>
<s5>29</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>Lanthane</s0>
<s2>NC</s2>
<s5>30</s5>
</fC03>
<fC03 i1="29" i2="X" l="ENG">
<s0>Lanthanum</s0>
<s2>NC</s2>
<s5>30</s5>
</fC03>
<fC03 i1="29" i2="X" l="SPA">
<s0>Lantano</s0>
<s2>NC</s2>
<s5>30</s5>
</fC03>
<fC03 i1="30" i2="X" l="FRE">
<s0>SiO2</s0>
<s4>INC</s4>
<s5>32</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Composé binaire</s0>
<s5>13</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Binary compound</s0>
<s5>13</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Compuesto binario</s0>
<s5>13</s5>
</fC07>
<fN21>
<s1>038</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>World Congress on Oxidation Catalysis (6WCOC)</s1>
<s2>6</s2>
<s3>Lille FRA</s3>
<s4>2009-07-05</s4>
</fA30>
</pR>
</standard>
<server>
<NO>PASCAL 11-0054630 INIST</NO>
<ET>Simple approach to prepare mesoporous silica supported mixed-oxide nanoparticles by in situ autocombustion procedure</ET>
<AU>SELLAM (D.); BONNE (M.); ARRII-CLACENS (S.); LAFAYE (G.); BION (N.); TEZKRATT (S.); ROYER (S.); MARECOT (P.); DUPREZ (D.); BORDES-RICHARD (Elisabeth); GAIGNEAUX (Eric M.); LÖFBERG (Axel); PAYEN (Edmond); RUIZ (Patricio)</AU>
<AF>Université de Poitiers, LACCO UMR 6503 CNRS, 40 avenue du recteur Pineau/86022 Poitiers/France (1 aut., 2 aut., 3 aut., 4 aut., 5 aut., 7 aut., 8 aut., 9 aut.); LCAGC, Hasnaoua 1, Université Mouloud Mammeri/Tizi Ouzou 15000/Algérie (1 aut., 6 aut.); Université de Lille 1, Unité de Catalyse et de Chimie du Solide (UMR CNRS 8181), Bât. C3/59655 Villeneuve d'Ascq/France (1 aut., 3 aut., 4 aut.); Université catholique de Louvain, Institute of Condensed Matter and Nanosciences (IMCN), Division "MOlecules, Solids and reactiviTy - MOST", Croix du Sud 2/17/1348 Louvain-la-Neuve/Belgique (2 aut., 5 aut.)</AF>
<DT>Publication en série; Congrès; Niveau analytique</DT>
<SO>Catalysis today : (Print); ISSN 0920-5861; Coden CATTEA; Pays-Bas; Da. 2010; Vol. 157; No. 1-4; Pp. 131-136; Bibl. 33 ref.</SO>
<LA>Anglais</LA>
<EA>LaCo0
<sub>3</sub>
-based nanocomposites were prepared by an in situ autocombustion procedure of a glycine-nitrate complex in mesoporous silica supports. For this purpose, two silica supports with different pore sizes (3.0nm for the HMS-type silica; 8.2 nm for the SBA15-type silica) were prepared. The final materials were characterized using XRD, TEM, N
<sub>2</sub>
-sorption and reactivities evaluated using oxygen isotopic exchange (OIE). One interesting point is the limited pore plugging, due to the low particle size obtained, when synthesis is specifically performed in large pore silica support (SBA15), as suggested by the limited pore volume decrease with respect to the HMS-based system. TEM coupled with EDXS analyses suggest the formation of crystalline mixed-oxide nanoparticles which have been observed with a cobalt to lanthanum ratio always close to 1. These nanoparticles exhibit high oxygen exchange capacity (1.2-2.3 times higher exchange capacities after 60 min of reaction), albeit a lower initial rate of exchange compared to the bulk reference sample (due to residual carbonate exchange). At the light of these results, it has been concluded that this method is efficient for producing nanocrystalline particles dispersed in silica pore structure.</EA>
<CC>001C01A03; 001C01J08; 001C01J02; 001C01I</CC>
<FD>Mésoporosité; Matériau poreux; Silice; Support; Oxyde; Nanoparticule; In situ; Perovskites; Oxygène; Mobilité; Catalyse hétérogène; Oxydation; Nanocomposite; Glycine; Nitrate; Complexe; Dimension pore; Diffraction RX; Microscopie électronique transmission; Sorption; Adsorption; Réactivité chimique; Echange isotopique; Pore; Colmatage; Dimension particule; Synthèse; Cobalt; Lanthane; SiO2</FD>
<FG>Composé binaire</FG>
<ED>Mesoporosity; Porous material; Silica; Support; Oxides; Nanoparticle; In situ; Perovskite type compound; Oxygen; Mobility; Heterogeneous catalysis; Oxidation; Nanocomposite; Glycine; Nitrates; Complexes; Pore size; X ray diffraction; Transmission electron microscopy; Sorption; Adsorption; Chemical reactivity; Isotope exchange; Pore; Plugging; Particle size; Synthesis; Cobalt; Lanthanum</ED>
<EG>Binary compound</EG>
<SD>Mesoporosidad; Material poroso; Sílice; Soporte; Óxido; Nanopartícula; In situ; Perovskitas; Oxígeno; Movilidad; Catálisis heterogénea; Oxidación; Nanocompuesto; Glicina; Nitrato; Complejo; Dimensión poro; Difracción RX; Microscopía electrónica transmisión; Sorción; Adsorción; Reactividad química; Intercambio isotópico; Poro; Taponamiento; Dimensión partícula; Síntesis; Cobalto; Lantano</SD>
<LO>INIST-21357.354000191399150220</LO>
<ID>11-0054630</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000077 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000077 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:11-0054630
   |texte=   Simple approach to prepare mesoporous silica supported mixed-oxide nanoparticles by in situ autocombustion procedure
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024