Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Role of the active layer thickness on the sensitivity of WO3 gas sensors

Identifieur interne : 000043 ( PascalFrancis/Checkpoint ); précédent : 000042; suivant : 000044

Role of the active layer thickness on the sensitivity of WO3 gas sensors

Auteurs : K. Aguir [France] ; J. Guerin [France] ; N. Mliki [Tunisie] ; M. Bendahan [France]

Source :

RBID : Pascal:12-0133012

Descripteurs français

English descriptors

Abstract

Sensitive materials in gas sensors are often polycrystalline semiconducting oxides such as WO3, SnO2, CuO or ZnO. They are most often composed of nanometric grains. They can be deposited either as thin or thick films. The film thickness plays an important role in the response stability and sensitivity of sensors. It is now well accepted that the relationship between the surface and volume of the sensitive layer plays a major role in the efficiency of detection. Many experimental and theoretical works were reported in explaining the experimental sensitivity vs. thickness relationships reported for the gas sensors prepared by different fabrication techniques. In addition, significant changes can be expected by adding catalytic nanograins in small quantities on the surface of the sensitive layers. For example, cobalt nanograins deposited on the surface of WO3 sensors produce an important change in the WO3 conductance. Indeed, cobalt changes the conduction type of the sensors from n- to p-type. This paper describes the effect of reducing the size of the sensors and nanostructured sensitive materials on the sensor response.


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0133012

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Role of the active layer thickness on the sensitivity of WO
<sub>3</sub>
gas sensors</title>
<author>
<name sortKey="Aguir, K" sort="Aguir, K" uniqKey="Aguir K" first="K." last="Aguir">K. Aguir</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>IM2NP, CNRS 6242, Aix-Marseille University, FST, S152</s1>
<s2>13397 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseille</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Guerin, J" sort="Guerin, J" uniqKey="Guerin J" first="J." last="Guerin">J. Guerin</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>IM2NP, CNRS 6242, Aix-Marseille University, FST, S152</s1>
<s2>13397 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseille</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mliki, N" sort="Mliki, N" uniqKey="Mliki N" first="N." last="Mliki">N. Mliki</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>LMOP, Faculty of Sciences, Tunis El Manar University</s1>
<s2>Tunis</s2>
<s3>TUN</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
<placeName>
<settlement type="city">Tunis</settlement>
<region nuts="2">Gouvernorat de Tunis</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bendahan, M" sort="Bendahan, M" uniqKey="Bendahan M" first="M." last="Bendahan">M. Bendahan</name>
<affiliation wicri:level="3">
<inist:fA14 i1="03">
<s1>IM2NP, CNRS 6242, Aix-Marseille University, FST, S152</s1>
<s2>13397 Marseille</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseille</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0133012</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0133012 INIST</idno>
<idno type="RBID">Pascal:12-0133012</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000058</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000237</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000043</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">000043</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Role of the active layer thickness on the sensitivity of WO
<sub>3</sub>
gas sensors</title>
<author>
<name sortKey="Aguir, K" sort="Aguir, K" uniqKey="Aguir K" first="K." last="Aguir">K. Aguir</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>IM2NP, CNRS 6242, Aix-Marseille University, FST, S152</s1>
<s2>13397 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseille</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Guerin, J" sort="Guerin, J" uniqKey="Guerin J" first="J." last="Guerin">J. Guerin</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>IM2NP, CNRS 6242, Aix-Marseille University, FST, S152</s1>
<s2>13397 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseille</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mliki, N" sort="Mliki, N" uniqKey="Mliki N" first="N." last="Mliki">N. Mliki</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>LMOP, Faculty of Sciences, Tunis El Manar University</s1>
<s2>Tunis</s2>
<s3>TUN</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
<placeName>
<settlement type="city">Tunis</settlement>
<region nuts="2">Gouvernorat de Tunis</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bendahan, M" sort="Bendahan, M" uniqKey="Bendahan M" first="M." last="Bendahan">M. Bendahan</name>
<affiliation wicri:level="3">
<inist:fA14 i1="03">
<s1>IM2NP, CNRS 6242, Aix-Marseille University, FST, S152</s1>
<s2>13397 Marseille</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseille</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">International journal of nanotechnology</title>
<title level="j" type="abbreviated">Int. j. nanotechnol.</title>
<idno type="ISSN">1475-7435</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">International journal of nanotechnology</title>
<title level="j" type="abbreviated">Int. j. nanotechnol.</title>
<idno type="ISSN">1475-7435</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Active layer</term>
<term>Beryllium additions</term>
<term>Cobalt</term>
<term>Gas sensors</term>
<term>Layer thickness</term>
<term>Modelling</term>
<term>Nanostructured materials</term>
<term>Polycrystals</term>
<term>Selectivity</term>
<term>Semiconductor materials</term>
<term>Sensor materials</term>
<term>Size effect</term>
<term>Surface layers</term>
<term>Theoretical study</term>
<term>Thick films</term>
<term>Thin films</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Couche active</term>
<term>Epaisseur couche</term>
<term>Capteur de gaz</term>
<term>Matériau capteur</term>
<term>Couche épaisse</term>
<term>Addition béryllium</term>
<term>Couche superficielle</term>
<term>Cobalt</term>
<term>Effet dimensionnel</term>
<term>Sélectivité</term>
<term>Modélisation</term>
<term>Etude théorique</term>
<term>Polycristal</term>
<term>Semiconducteur</term>
<term>Couche mince</term>
<term>Nanomatériau</term>
<term>WO3</term>
<term>SnO2</term>
<term>CuO</term>
<term>ZnO</term>
<term>Substrat cobalt</term>
<term>0707D</term>
<term>8107B</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Cobalt</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Sensitive materials in gas sensors are often polycrystalline semiconducting oxides such as WO
<sub>3</sub>
, SnO
<sub>2</sub>
, CuO or ZnO. They are most often composed of nanometric grains. They can be deposited either as thin or thick films. The film thickness plays an important role in the response stability and sensitivity of sensors. It is now well accepted that the relationship between the surface and volume of the sensitive layer plays a major role in the efficiency of detection. Many experimental and theoretical works were reported in explaining the experimental sensitivity vs. thickness relationships reported for the gas sensors prepared by different fabrication techniques. In addition, significant changes can be expected by adding catalytic nanograins in small quantities on the surface of the sensitive layers. For example, cobalt nanograins deposited on the surface of WO
<sub>3</sub>
sensors produce an important change in the WO
<sub>3</sub>
conductance. Indeed, cobalt changes the conduction type of the sensors from n- to p-type. This paper describes the effect of reducing the size of the sensors and nanostructured sensitive materials on the sensor response.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1475-7435</s0>
</fA01>
<fA03 i2="1">
<s0>Int. j. nanotechnol.</s0>
</fA03>
<fA05>
<s2>9</s2>
</fA05>
<fA06>
<s2>3-7</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Role of the active layer thickness on the sensitivity of WO
<sub>3</sub>
gas sensors</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>On Nanotechnology in France III: C'Nano PACA</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>AGUIR (K.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GUERIN (J.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MLIKI (N.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>BENDAHAN (M.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>HANBÜCHEN (Margrit)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>LANNOO (Michel)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>BLANC (Wilfried)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>DJENIZIAN (Thierry)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="05" i2="1">
<s1>SANTINACCI (Lionel)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>IM2NP, CNRS 6242, Aix-Marseille University, FST, S152</s1>
<s2>13397 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>LMOP, Faculty of Sciences, Tunis El Manar University</s1>
<s2>Tunis</s2>
<s3>TUN</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>IM2NP, CNRS 6242, Aix-Marseille University, FST, S152</s1>
<s2>13397 Marseille</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>C'Nano PACA, Campus Luminy - Case 913</s1>
<s2>13288 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA15>
<fA20>
<s1>471-479</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27530</s2>
<s5>354000508430030190</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>23 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0133012</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>International journal of nanotechnology</s0>
</fA64>
<fA66 i1="01">
<s0>CHE</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Sensitive materials in gas sensors are often polycrystalline semiconducting oxides such as WO
<sub>3</sub>
, SnO
<sub>2</sub>
, CuO or ZnO. They are most often composed of nanometric grains. They can be deposited either as thin or thick films. The film thickness plays an important role in the response stability and sensitivity of sensors. It is now well accepted that the relationship between the surface and volume of the sensitive layer plays a major role in the efficiency of detection. Many experimental and theoretical works were reported in explaining the experimental sensitivity vs. thickness relationships reported for the gas sensors prepared by different fabrication techniques. In addition, significant changes can be expected by adding catalytic nanograins in small quantities on the surface of the sensitive layers. For example, cobalt nanograins deposited on the surface of WO
<sub>3</sub>
sensors produce an important change in the WO
<sub>3</sub>
conductance. Indeed, cobalt changes the conduction type of the sensors from n- to p-type. This paper describes the effect of reducing the size of the sensors and nanostructured sensitive materials on the sensor response.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B00G07D</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Couche active</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Active layer</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Capa activa</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Epaisseur couche</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Layer thickness</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Espesor capa</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Capteur de gaz</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Gas sensors</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Matériau capteur</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Sensor materials</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Couche épaisse</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Thick films</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Addition béryllium</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Beryllium additions</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Couche superficielle</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Surface layers</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Cobalt</s0>
<s2>NC</s2>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Cobalt</s0>
<s2>NC</s2>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Effet dimensionnel</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Size effect</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Sélectivité</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Selectivity</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Selectividad</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Modélisation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Modelling</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Etude théorique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Theoretical study</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Polycristal</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Polycrystals</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Semiconducteur</s0>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Semiconductor materials</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>18</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>WO3</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>SnO2</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>CuO</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>ZnO</s0>
<s4>INC</s4>
<s5>49</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Substrat cobalt</s0>
<s4>INC</s4>
<s5>50</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>0707D</s0>
<s4>INC</s4>
<s5>65</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fN21>
<s1>100</s1>
</fN21>
</pA>
</standard>
</inist>
<affiliations>
<list>
<country>
<li>France</li>
<li>Tunisie</li>
</country>
<region>
<li>Gouvernorat de Tunis</li>
<li>Provence-Alpes-Côte d'Azur</li>
</region>
<settlement>
<li>Marseille</li>
<li>Tunis</li>
</settlement>
</list>
<tree>
<country name="France">
<region name="Provence-Alpes-Côte d'Azur">
<name sortKey="Aguir, K" sort="Aguir, K" uniqKey="Aguir K" first="K." last="Aguir">K. Aguir</name>
</region>
<name sortKey="Bendahan, M" sort="Bendahan, M" uniqKey="Bendahan M" first="M." last="Bendahan">M. Bendahan</name>
<name sortKey="Guerin, J" sort="Guerin, J" uniqKey="Guerin J" first="J." last="Guerin">J. Guerin</name>
</country>
<country name="Tunisie">
<region name="Gouvernorat de Tunis">
<name sortKey="Mliki, N" sort="Mliki, N" uniqKey="Mliki N" first="N." last="Mliki">N. Mliki</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/PascalFrancis/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000043 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Checkpoint/biblio.hfd -nk 000043 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    PascalFrancis
   |étape=   Checkpoint
   |type=    RBID
   |clé=     Pascal:12-0133012
   |texte=   Role of the active layer thickness on the sensitivity of WO3 gas sensors
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024