Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Role of the active layer thickness on the sensitivity of WO3 gas sensors

Identifieur interne : 000237 ( PascalFrancis/Curation ); précédent : 000236; suivant : 000238

Role of the active layer thickness on the sensitivity of WO3 gas sensors

Auteurs : K. Aguir [France] ; J. Guerin [France] ; N. Mliki [Tunisie] ; M. Bendahan [France]

Source :

RBID : Pascal:12-0133012

Descripteurs français

English descriptors

Abstract

Sensitive materials in gas sensors are often polycrystalline semiconducting oxides such as WO3, SnO2, CuO or ZnO. They are most often composed of nanometric grains. They can be deposited either as thin or thick films. The film thickness plays an important role in the response stability and sensitivity of sensors. It is now well accepted that the relationship between the surface and volume of the sensitive layer plays a major role in the efficiency of detection. Many experimental and theoretical works were reported in explaining the experimental sensitivity vs. thickness relationships reported for the gas sensors prepared by different fabrication techniques. In addition, significant changes can be expected by adding catalytic nanograins in small quantities on the surface of the sensitive layers. For example, cobalt nanograins deposited on the surface of WO3 sensors produce an important change in the WO3 conductance. Indeed, cobalt changes the conduction type of the sensors from n- to p-type. This paper describes the effect of reducing the size of the sensors and nanostructured sensitive materials on the sensor response.
pA  
A01 01  1    @0 1475-7435
A03   1    @0 Int. j. nanotechnol.
A05       @2 9
A06       @2 3-7
A08 01  1  ENG  @1 Role of the active layer thickness on the sensitivity of WO3 gas sensors
A09 01  1  ENG  @1 On Nanotechnology in France III: C'Nano PACA
A11 01  1    @1 AGUIR (K.)
A11 02  1    @1 GUERIN (J.)
A11 03  1    @1 MLIKI (N.)
A11 04  1    @1 BENDAHAN (M.)
A12 01  1    @1 HANBÜCHEN (Margrit) @9 ed.
A12 02  1    @1 LANNOO (Michel) @9 ed.
A12 03  1    @1 BLANC (Wilfried) @9 ed.
A12 04  1    @1 DJENIZIAN (Thierry) @9 ed.
A12 05  1    @1 SANTINACCI (Lionel) @9 ed.
A14 01      @1 IM2NP, CNRS 6242, Aix-Marseille University, FST, S152 @2 13397 Marseille @3 FRA @Z 1 aut. @Z 2 aut.
A14 02      @1 LMOP, Faculty of Sciences, Tunis El Manar University @2 Tunis @3 TUN @Z 3 aut.
A14 03      @1 IM2NP, CNRS 6242, Aix-Marseille University, FST, S152 @2 13397 Marseille @3 FRA @Z 4 aut.
A15 01      @1 C'Nano PACA, Campus Luminy - Case 913 @2 13288 Marseille @3 FRA @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut. @Z 5 aut.
A20       @1 471-479
A21       @1 2012
A23 01      @0 ENG
A43 01      @1 INIST @2 27530 @5 354000508430030190
A44       @0 0000 @1 © 2012 INIST-CNRS. All rights reserved.
A45       @0 23 ref.
A47 01  1    @0 12-0133012
A60       @1 P
A61       @0 A
A64 01  1    @0 International journal of nanotechnology
A66 01      @0 CHE
C01 01    ENG  @0 Sensitive materials in gas sensors are often polycrystalline semiconducting oxides such as WO3, SnO2, CuO or ZnO. They are most often composed of nanometric grains. They can be deposited either as thin or thick films. The film thickness plays an important role in the response stability and sensitivity of sensors. It is now well accepted that the relationship between the surface and volume of the sensitive layer plays a major role in the efficiency of detection. Many experimental and theoretical works were reported in explaining the experimental sensitivity vs. thickness relationships reported for the gas sensors prepared by different fabrication techniques. In addition, significant changes can be expected by adding catalytic nanograins in small quantities on the surface of the sensitive layers. For example, cobalt nanograins deposited on the surface of WO3 sensors produce an important change in the WO3 conductance. Indeed, cobalt changes the conduction type of the sensors from n- to p-type. This paper describes the effect of reducing the size of the sensors and nanostructured sensitive materials on the sensor response.
C02 01  3    @0 001B80A07B
C02 02  3    @0 001B00G07D
C03 01  X  FRE  @0 Couche active @5 01
C03 01  X  ENG  @0 Active layer @5 01
C03 01  X  SPA  @0 Capa activa @5 01
C03 02  X  FRE  @0 Epaisseur couche @5 02
C03 02  X  ENG  @0 Layer thickness @5 02
C03 02  X  SPA  @0 Espesor capa @5 02
C03 03  3  FRE  @0 Capteur de gaz @5 03
C03 03  3  ENG  @0 Gas sensors @5 03
C03 04  3  FRE  @0 Matériau capteur @5 04
C03 04  3  ENG  @0 Sensor materials @5 04
C03 05  3  FRE  @0 Couche épaisse @5 05
C03 05  3  ENG  @0 Thick films @5 05
C03 06  3  FRE  @0 Addition béryllium @5 06
C03 06  3  ENG  @0 Beryllium additions @5 06
C03 07  3  FRE  @0 Couche superficielle @5 07
C03 07  3  ENG  @0 Surface layers @5 07
C03 08  3  FRE  @0 Cobalt @2 NC @5 08
C03 08  3  ENG  @0 Cobalt @2 NC @5 08
C03 09  3  FRE  @0 Effet dimensionnel @5 09
C03 09  3  ENG  @0 Size effect @5 09
C03 10  X  FRE  @0 Sélectivité @5 10
C03 10  X  ENG  @0 Selectivity @5 10
C03 10  X  SPA  @0 Selectividad @5 10
C03 11  3  FRE  @0 Modélisation @5 11
C03 11  3  ENG  @0 Modelling @5 11
C03 12  3  FRE  @0 Etude théorique @5 12
C03 12  3  ENG  @0 Theoretical study @5 12
C03 13  3  FRE  @0 Polycristal @5 15
C03 13  3  ENG  @0 Polycrystals @5 15
C03 14  3  FRE  @0 Semiconducteur @5 16
C03 14  3  ENG  @0 Semiconductor materials @5 16
C03 15  3  FRE  @0 Couche mince @5 17
C03 15  3  ENG  @0 Thin films @5 17
C03 16  3  FRE  @0 Nanomatériau @5 18
C03 16  3  ENG  @0 Nanostructured materials @5 18
C03 17  3  FRE  @0 WO3 @4 INC @5 46
C03 18  3  FRE  @0 SnO2 @4 INC @5 47
C03 19  3  FRE  @0 CuO @4 INC @5 48
C03 20  3  FRE  @0 ZnO @4 INC @5 49
C03 21  3  FRE  @0 Substrat cobalt @4 INC @5 50
C03 22  3  FRE  @0 0707D @4 INC @5 65
C03 23  3  FRE  @0 8107B @4 INC @5 71
N21       @1 100

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0133012

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Role of the active layer thickness on the sensitivity of WO
<sub>3</sub>
gas sensors</title>
<author>
<name sortKey="Aguir, K" sort="Aguir, K" uniqKey="Aguir K" first="K." last="Aguir">K. Aguir</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>IM2NP, CNRS 6242, Aix-Marseille University, FST, S152</s1>
<s2>13397 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Guerin, J" sort="Guerin, J" uniqKey="Guerin J" first="J." last="Guerin">J. Guerin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>IM2NP, CNRS 6242, Aix-Marseille University, FST, S152</s1>
<s2>13397 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Mliki, N" sort="Mliki, N" uniqKey="Mliki N" first="N." last="Mliki">N. Mliki</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>LMOP, Faculty of Sciences, Tunis El Manar University</s1>
<s2>Tunis</s2>
<s3>TUN</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
</affiliation>
</author>
<author>
<name sortKey="Bendahan, M" sort="Bendahan, M" uniqKey="Bendahan M" first="M." last="Bendahan">M. Bendahan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>IM2NP, CNRS 6242, Aix-Marseille University, FST, S152</s1>
<s2>13397 Marseille</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0133012</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0133012 INIST</idno>
<idno type="RBID">Pascal:12-0133012</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000058</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000237</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Role of the active layer thickness on the sensitivity of WO
<sub>3</sub>
gas sensors</title>
<author>
<name sortKey="Aguir, K" sort="Aguir, K" uniqKey="Aguir K" first="K." last="Aguir">K. Aguir</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>IM2NP, CNRS 6242, Aix-Marseille University, FST, S152</s1>
<s2>13397 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Guerin, J" sort="Guerin, J" uniqKey="Guerin J" first="J." last="Guerin">J. Guerin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>IM2NP, CNRS 6242, Aix-Marseille University, FST, S152</s1>
<s2>13397 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Mliki, N" sort="Mliki, N" uniqKey="Mliki N" first="N." last="Mliki">N. Mliki</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>LMOP, Faculty of Sciences, Tunis El Manar University</s1>
<s2>Tunis</s2>
<s3>TUN</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
</affiliation>
</author>
<author>
<name sortKey="Bendahan, M" sort="Bendahan, M" uniqKey="Bendahan M" first="M." last="Bendahan">M. Bendahan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>IM2NP, CNRS 6242, Aix-Marseille University, FST, S152</s1>
<s2>13397 Marseille</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">International journal of nanotechnology</title>
<title level="j" type="abbreviated">Int. j. nanotechnol.</title>
<idno type="ISSN">1475-7435</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">International journal of nanotechnology</title>
<title level="j" type="abbreviated">Int. j. nanotechnol.</title>
<idno type="ISSN">1475-7435</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Active layer</term>
<term>Beryllium additions</term>
<term>Cobalt</term>
<term>Gas sensors</term>
<term>Layer thickness</term>
<term>Modelling</term>
<term>Nanostructured materials</term>
<term>Polycrystals</term>
<term>Selectivity</term>
<term>Semiconductor materials</term>
<term>Sensor materials</term>
<term>Size effect</term>
<term>Surface layers</term>
<term>Theoretical study</term>
<term>Thick films</term>
<term>Thin films</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Couche active</term>
<term>Epaisseur couche</term>
<term>Capteur de gaz</term>
<term>Matériau capteur</term>
<term>Couche épaisse</term>
<term>Addition béryllium</term>
<term>Couche superficielle</term>
<term>Cobalt</term>
<term>Effet dimensionnel</term>
<term>Sélectivité</term>
<term>Modélisation</term>
<term>Etude théorique</term>
<term>Polycristal</term>
<term>Semiconducteur</term>
<term>Couche mince</term>
<term>Nanomatériau</term>
<term>WO3</term>
<term>SnO2</term>
<term>CuO</term>
<term>ZnO</term>
<term>Substrat cobalt</term>
<term>0707D</term>
<term>8107B</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Cobalt</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Sensitive materials in gas sensors are often polycrystalline semiconducting oxides such as WO
<sub>3</sub>
, SnO
<sub>2</sub>
, CuO or ZnO. They are most often composed of nanometric grains. They can be deposited either as thin or thick films. The film thickness plays an important role in the response stability and sensitivity of sensors. It is now well accepted that the relationship between the surface and volume of the sensitive layer plays a major role in the efficiency of detection. Many experimental and theoretical works were reported in explaining the experimental sensitivity vs. thickness relationships reported for the gas sensors prepared by different fabrication techniques. In addition, significant changes can be expected by adding catalytic nanograins in small quantities on the surface of the sensitive layers. For example, cobalt nanograins deposited on the surface of WO
<sub>3</sub>
sensors produce an important change in the WO
<sub>3</sub>
conductance. Indeed, cobalt changes the conduction type of the sensors from n- to p-type. This paper describes the effect of reducing the size of the sensors and nanostructured sensitive materials on the sensor response.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1475-7435</s0>
</fA01>
<fA03 i2="1">
<s0>Int. j. nanotechnol.</s0>
</fA03>
<fA05>
<s2>9</s2>
</fA05>
<fA06>
<s2>3-7</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Role of the active layer thickness on the sensitivity of WO
<sub>3</sub>
gas sensors</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>On Nanotechnology in France III: C'Nano PACA</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>AGUIR (K.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GUERIN (J.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MLIKI (N.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>BENDAHAN (M.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>HANBÜCHEN (Margrit)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>LANNOO (Michel)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>BLANC (Wilfried)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>DJENIZIAN (Thierry)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="05" i2="1">
<s1>SANTINACCI (Lionel)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>IM2NP, CNRS 6242, Aix-Marseille University, FST, S152</s1>
<s2>13397 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>LMOP, Faculty of Sciences, Tunis El Manar University</s1>
<s2>Tunis</s2>
<s3>TUN</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>IM2NP, CNRS 6242, Aix-Marseille University, FST, S152</s1>
<s2>13397 Marseille</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>C'Nano PACA, Campus Luminy - Case 913</s1>
<s2>13288 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA15>
<fA20>
<s1>471-479</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27530</s2>
<s5>354000508430030190</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>23 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0133012</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>International journal of nanotechnology</s0>
</fA64>
<fA66 i1="01">
<s0>CHE</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Sensitive materials in gas sensors are often polycrystalline semiconducting oxides such as WO
<sub>3</sub>
, SnO
<sub>2</sub>
, CuO or ZnO. They are most often composed of nanometric grains. They can be deposited either as thin or thick films. The film thickness plays an important role in the response stability and sensitivity of sensors. It is now well accepted that the relationship between the surface and volume of the sensitive layer plays a major role in the efficiency of detection. Many experimental and theoretical works were reported in explaining the experimental sensitivity vs. thickness relationships reported for the gas sensors prepared by different fabrication techniques. In addition, significant changes can be expected by adding catalytic nanograins in small quantities on the surface of the sensitive layers. For example, cobalt nanograins deposited on the surface of WO
<sub>3</sub>
sensors produce an important change in the WO
<sub>3</sub>
conductance. Indeed, cobalt changes the conduction type of the sensors from n- to p-type. This paper describes the effect of reducing the size of the sensors and nanostructured sensitive materials on the sensor response.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B00G07D</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Couche active</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Active layer</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Capa activa</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Epaisseur couche</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Layer thickness</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Espesor capa</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Capteur de gaz</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Gas sensors</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Matériau capteur</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Sensor materials</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Couche épaisse</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Thick films</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Addition béryllium</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Beryllium additions</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Couche superficielle</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Surface layers</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Cobalt</s0>
<s2>NC</s2>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Cobalt</s0>
<s2>NC</s2>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Effet dimensionnel</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Size effect</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Sélectivité</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Selectivity</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Selectividad</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Modélisation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Modelling</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Etude théorique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Theoretical study</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Polycristal</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Polycrystals</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Semiconducteur</s0>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Semiconductor materials</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>18</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>WO3</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>SnO2</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>CuO</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>ZnO</s0>
<s4>INC</s4>
<s5>49</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Substrat cobalt</s0>
<s4>INC</s4>
<s5>50</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>0707D</s0>
<s4>INC</s4>
<s5>65</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fN21>
<s1>100</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000237 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000237 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:12-0133012
   |texte=   Role of the active layer thickness on the sensitivity of WO3 gas sensors
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024