Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Processing and performance of bridge deck subcomponents using two schemes of resin infusion

Identifieur interne : 001199 ( Istex/Corpus ); précédent : 001198; suivant : 001200

Processing and performance of bridge deck subcomponents using two schemes of resin infusion

Auteurs : Vistasp M. Karbhari ; Dongqing Wang ; Yanqiang Gao

Source :

RBID : ISTEX:1F493602E9E36F10BFF23C1E12399D3F7BB48F33

Abstract

Due to their lightweight, ease of installation in the field, and potential life-cycle durability, fiber reinforced composites are increasingly being considered in applications such as replacement bridge decks. However, current costs associated with the fabrication of such decks are 4–5 times that of conventional reinforced concrete decks thus placing great importance on the development of cost-effective processes such as resin infusion. This paper describes results of a test program aimed at the assessment of two different resin infusion schemes for the fabrication of foam core filled truss-type bridge decks. Model flow studies and simple analytical procedures are used to assess flow phenomena. The results of process and performance comparisons show that although the use of a microgroove network can be more efficient than the use of a high-permeable medium, in terms of rate of infusion, and global structural performance may be comparable, there is a greater likelihood of defect formation. Process induced defect formation is different in the two schemes with the former having a higher susceptibility for localized effects. Defect types are identified, and comparisons of performance are made at both a local and global level.

Url:
DOI: 10.1016/S0263-8223(00)00136-7

Links to Exploration step

ISTEX:1F493602E9E36F10BFF23C1E12399D3F7BB48F33

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Processing and performance of bridge deck subcomponents using two schemes of resin infusion</title>
<author>
<name sortKey="Karbhari, Vistasp M" sort="Karbhari, Vistasp M" uniqKey="Karbhari V" first="Vistasp M" last="Karbhari">Vistasp M. Karbhari</name>
<affiliation>
<mods:affiliation>Department of Structural Engineering, MC-0085, University of California, San Diego, La Jolla, CA 92093-0085, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: vkarbhari@ucsd.edu</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Dongqing" sort="Wang, Dongqing" uniqKey="Wang D" first="Dongqing" last="Wang">Dongqing Wang</name>
<affiliation>
<mods:affiliation>Department of Structural Engineering, MC-0085, University of California, San Diego, La Jolla, CA 92093-0085, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gao, Yanqiang" sort="Gao, Yanqiang" uniqKey="Gao Y" first="Yanqiang" last="Gao">Yanqiang Gao</name>
<affiliation>
<mods:affiliation>Department of Structural Engineering, MC-0085, University of California, San Diego, La Jolla, CA 92093-0085, USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:1F493602E9E36F10BFF23C1E12399D3F7BB48F33</idno>
<date when="2001" year="2001">2001</date>
<idno type="doi">10.1016/S0263-8223(00)00136-7</idno>
<idno type="url">https://api.istex.fr/document/1F493602E9E36F10BFF23C1E12399D3F7BB48F33/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001199</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001199</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Processing and performance of bridge deck subcomponents using two schemes of resin infusion</title>
<author>
<name sortKey="Karbhari, Vistasp M" sort="Karbhari, Vistasp M" uniqKey="Karbhari V" first="Vistasp M" last="Karbhari">Vistasp M. Karbhari</name>
<affiliation>
<mods:affiliation>Department of Structural Engineering, MC-0085, University of California, San Diego, La Jolla, CA 92093-0085, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: vkarbhari@ucsd.edu</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Dongqing" sort="Wang, Dongqing" uniqKey="Wang D" first="Dongqing" last="Wang">Dongqing Wang</name>
<affiliation>
<mods:affiliation>Department of Structural Engineering, MC-0085, University of California, San Diego, La Jolla, CA 92093-0085, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gao, Yanqiang" sort="Gao, Yanqiang" uniqKey="Gao Y" first="Yanqiang" last="Gao">Yanqiang Gao</name>
<affiliation>
<mods:affiliation>Department of Structural Engineering, MC-0085, University of California, San Diego, La Jolla, CA 92093-0085, USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Composite Structures</title>
<title level="j" type="abbrev">COST</title>
<idno type="ISSN">0263-8223</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2001">2001</date>
<biblScope unit="volume">51</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="257">257</biblScope>
<biblScope unit="page" to="271">271</biblScope>
</imprint>
<idno type="ISSN">0263-8223</idno>
</series>
<idno type="istex">1F493602E9E36F10BFF23C1E12399D3F7BB48F33</idno>
<idno type="DOI">10.1016/S0263-8223(00)00136-7</idno>
<idno type="PII">S0263-8223(00)00136-7</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0263-8223</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Due to their lightweight, ease of installation in the field, and potential life-cycle durability, fiber reinforced composites are increasingly being considered in applications such as replacement bridge decks. However, current costs associated with the fabrication of such decks are 4–5 times that of conventional reinforced concrete decks thus placing great importance on the development of cost-effective processes such as resin infusion. This paper describes results of a test program aimed at the assessment of two different resin infusion schemes for the fabrication of foam core filled truss-type bridge decks. Model flow studies and simple analytical procedures are used to assess flow phenomena. The results of process and performance comparisons show that although the use of a microgroove network can be more efficient than the use of a high-permeable medium, in terms of rate of infusion, and global structural performance may be comparable, there is a greater likelihood of defect formation. Process induced defect formation is different in the two schemes with the former having a higher susceptibility for localized effects. Defect types are identified, and comparisons of performance are made at both a local and global level.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<author>
<json:item>
<name>Vistasp M Karbhari</name>
<affiliations>
<json:string>Department of Structural Engineering, MC-0085, University of California, San Diego, La Jolla, CA 92093-0085, USA</json:string>
<json:string>E-mail: vkarbhari@ucsd.edu</json:string>
</affiliations>
</json:item>
<json:item>
<name>Dongqing Wang</name>
<affiliations>
<json:string>Department of Structural Engineering, MC-0085, University of California, San Diego, La Jolla, CA 92093-0085, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Yanqiang Gao</name>
<affiliations>
<json:string>Department of Structural Engineering, MC-0085, University of California, San Diego, La Jolla, CA 92093-0085, USA</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>E-Glass</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Vinylester</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Bridge decks</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Resin infusion</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Microgrooves</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>High permeability layer</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Shrinkage</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>Due to their lightweight, ease of installation in the field, and potential life-cycle durability, fiber reinforced composites are increasingly being considered in applications such as replacement bridge decks. However, current costs associated with the fabrication of such decks are 4–5 times that of conventional reinforced concrete decks thus placing great importance on the development of cost-effective processes such as resin infusion. This paper describes results of a test program aimed at the assessment of two different resin infusion schemes for the fabrication of foam core filled truss-type bridge decks. Model flow studies and simple analytical procedures are used to assess flow phenomena. The results of process and performance comparisons show that although the use of a microgroove network can be more efficient than the use of a high-permeable medium, in terms of rate of infusion, and global structural performance may be comparable, there is a greater likelihood of defect formation. Process induced defect formation is different in the two schemes with the former having a higher susceptibility for localized effects. Defect types are identified, and comparisons of performance are made at both a local and global level.</abstract>
<qualityIndicators>
<score>7.244</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>595 x 794 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>7</keywordCount>
<abstractCharCount>1241</abstractCharCount>
<pdfWordCount>8446</pdfWordCount>
<pdfCharCount>50246</pdfCharCount>
<pdfPageCount>15</pdfPageCount>
<abstractWordCount>187</abstractWordCount>
</qualityIndicators>
<title>Processing and performance of bridge deck subcomponents using two schemes of resin infusion</title>
<pii>
<json:string>S0263-8223(00)00136-7</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>51</volume>
<pii>
<json:string>S0263-8223(00)X0067-0</json:string>
</pii>
<pages>
<last>271</last>
<first>257</first>
</pages>
<issn>
<json:string>0263-8223</json:string>
</issn>
<issue>3</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<title>Composite Structures</title>
<publicationDate>2001</publicationDate>
</host>
<categories>
<wos>
<json:string>MATERIALS SCIENCE, COMPOSITES</json:string>
</wos>
</categories>
<publicationDate>2001</publicationDate>
<copyrightDate>2001</copyrightDate>
<doi>
<json:string>10.1016/S0263-8223(00)00136-7</json:string>
</doi>
<id>1F493602E9E36F10BFF23C1E12399D3F7BB48F33</id>
<score>0.045823053</score>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/1F493602E9E36F10BFF23C1E12399D3F7BB48F33/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/1F493602E9E36F10BFF23C1E12399D3F7BB48F33/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/1F493602E9E36F10BFF23C1E12399D3F7BB48F33/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Processing and performance of bridge deck subcomponents using two schemes of resin infusion</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>©2001 Elsevier Science Ltd</p>
</availability>
<date>2001</date>
</publicationStmt>
<notesStmt>
<note type="content">Fig. 1: Deterioration of deck top surface to the level of reinforcing steel.</note>
<note type="content">Fig. 2: Severe degradation of decks leading to through-thickness holes.</note>
<note type="content">Fig. 3: Schematic of progression of flow in SCRIMP.</note>
<note type="content">Fig. 4: Schematic of progression of flow in the microgroove variation of resin infusion.</note>
<note type="content">Fig. 5: Schematic of the 17-cell component.</note>
<note type="content">Fig. 6: Test setup for component response characterization.</note>
<note type="content">Fig. 7: Comparison of fill times resulting from the use of: (a) distribution medium; (b) microgroove-based infusion techniques.</note>
<note type="content">Fig. 8: Effect of microgroove dimensions on equivalent permeability.</note>
<note type="content">Fig. 9: Comparison of effects of preform permeability and groove width on equivalent permeability for α=0.1 and groove height of 0.005 m.</note>
<note type="content">Fig. 10: Effect of α on equivalent permeability for a five harness satin weave with K=336 darcy: (a) as a function of microgroove depth for W=0.005 m; (b) as a function of microgroove width for H=0.008 m.</note>
<note type="content">Fig. 11: Schematic of configuration for determination of lead–lag distance due to flow in the preform resulting from infusion from a groove.</note>
<note type="content">Fig. 12: Load–deflection (center-span) envelopes for the three components.</note>
<note type="content">Fig. 13: (a) Close-up of lower node showing initiation of vertical crack between preform elements and the horizontal crack between individual wrapped cores and the face sheets; (b) close-up showing kinked bifurcated crack at the top node; (c) close-up showing formation of separation cracks at the bottom node and a kinked (oblique and horizontal) crack at the top node.</note>
<note type="content">Fig. 14: Potential process induced defects including: (a) resin rich areas around corners; (b) fabric movement, wrinkling, and bulging in the nodal area.</note>
<note type="content">Fig. 15: Dry spots and planes caused by movement of the dry preform prior to resin infusion in the nodal region.</note>
<note type="content">Table 1: Comparative costs of deck systems</note>
<note type="content">Table 2: Details of non-woven fabrics used in the preform</note>
<note type="content">Table 3: Configurational details of subcomponent</note>
<note type="content">Table 4: Comparison of fill times using distribution media</note>
<note type="content">Table 5: Effect of preform thickness and permeability ratio on lead/lag distance for grooves of width 4 mm</note>
<note type="content">Table 6: Comparison of response characteristics</note>
<note type="content">Table 7: Overall comparison of SBS strength from specimens cut from each subcomponent</note>
<note type="content">Table 8: Results of DMTA tests</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Processing and performance of bridge deck subcomponents using two schemes of resin infusion</title>
<author xml:id="author-1">
<persName>
<forename type="first">Vistasp M</forename>
<surname>Karbhari</surname>
</persName>
<email>vkarbhari@ucsd.edu</email>
<note type="correspondence">
<p>Corresponding author. Tel.: +1-858-534-6470; fax: +1-858-534-6373</p>
</note>
<affiliation>Department of Structural Engineering, MC-0085, University of California, San Diego, La Jolla, CA 92093-0085, USA</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Dongqing</forename>
<surname>Wang</surname>
</persName>
<note type="biography">Now with Mobile Tool International, Westminster, CO.</note>
<affiliation>Now with Mobile Tool International, Westminster, CO.</affiliation>
<affiliation>Department of Structural Engineering, MC-0085, University of California, San Diego, La Jolla, CA 92093-0085, USA</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Yanqiang</forename>
<surname>Gao</surname>
</persName>
<note type="biography">Now with Berger/ABAM, Seattle, WA.</note>
<affiliation>Now with Berger/ABAM, Seattle, WA.</affiliation>
<affiliation>Department of Structural Engineering, MC-0085, University of California, San Diego, La Jolla, CA 92093-0085, USA</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Composite Structures</title>
<title level="j" type="abbrev">COST</title>
<idno type="pISSN">0263-8223</idno>
<idno type="PII">S0263-8223(00)X0067-0</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2001"></date>
<biblScope unit="volume">51</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="257">257</biblScope>
<biblScope unit="page" to="271">271</biblScope>
</imprint>
</monogr>
<idno type="istex">1F493602E9E36F10BFF23C1E12399D3F7BB48F33</idno>
<idno type="DOI">10.1016/S0263-8223(00)00136-7</idno>
<idno type="PII">S0263-8223(00)00136-7</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2001</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Due to their lightweight, ease of installation in the field, and potential life-cycle durability, fiber reinforced composites are increasingly being considered in applications such as replacement bridge decks. However, current costs associated with the fabrication of such decks are 4–5 times that of conventional reinforced concrete decks thus placing great importance on the development of cost-effective processes such as resin infusion. This paper describes results of a test program aimed at the assessment of two different resin infusion schemes for the fabrication of foam core filled truss-type bridge decks. Model flow studies and simple analytical procedures are used to assess flow phenomena. The results of process and performance comparisons show that although the use of a microgroove network can be more efficient than the use of a high-permeable medium, in terms of rate of infusion, and global structural performance may be comparable, there is a greater likelihood of defect formation. Process induced defect formation is different in the two schemes with the former having a higher susceptibility for localized effects. Defect types are identified, and comparisons of performance are made at both a local and global level.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>E-Glass</term>
</item>
<item>
<term>Vinylester</term>
</item>
<item>
<term>Bridge decks</term>
</item>
<item>
<term>Resin infusion</term>
</item>
<item>
<term>Microgrooves</term>
</item>
<item>
<term>High permeability layer</term>
</item>
<item>
<term>Shrinkage</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2001">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/1F493602E9E36F10BFF23C1E12399D3F7BB48F33/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="gr1"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="gr2"></istex:entity>
<istex:entity SYSTEM="gr3" NDATA="IMAGE" name="gr3"></istex:entity>
<istex:entity SYSTEM="gr4" NDATA="IMAGE" name="gr4"></istex:entity>
<istex:entity SYSTEM="gr5" NDATA="IMAGE" name="gr5"></istex:entity>
<istex:entity SYSTEM="gr6" NDATA="IMAGE" name="gr6"></istex:entity>
<istex:entity SYSTEM="gr7" NDATA="IMAGE" name="gr7"></istex:entity>
<istex:entity SYSTEM="gr8" NDATA="IMAGE" name="gr8"></istex:entity>
<istex:entity SYSTEM="gr9" NDATA="IMAGE" name="gr9"></istex:entity>
<istex:entity SYSTEM="gr10" NDATA="IMAGE" name="gr10"></istex:entity>
<istex:entity SYSTEM="gr11" NDATA="IMAGE" name="gr11"></istex:entity>
<istex:entity SYSTEM="gr12" NDATA="IMAGE" name="gr12"></istex:entity>
<istex:entity SYSTEM="gr13" NDATA="IMAGE" name="gr13"></istex:entity>
<istex:entity SYSTEM="gr14" NDATA="IMAGE" name="gr14"></istex:entity>
<istex:entity SYSTEM="gr15" NDATA="IMAGE" name="gr15"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>COST</jid>
<aid>1465</aid>
<ce:pii>S0263-8223(00)00136-7</ce:pii>
<ce:doi>10.1016/S0263-8223(00)00136-7</ce:doi>
<ce:copyright type="full-transfer" year="2001">Elsevier Science Ltd</ce:copyright>
</item-info>
<head>
<ce:title>Processing and performance of bridge deck subcomponents using two schemes of resin infusion</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Vistasp M</ce:given-name>
<ce:surname>Karbhari</ce:surname>
<ce:cross-ref refid="CORR1">*</ce:cross-ref>
<ce:e-address>vkarbhari@ucsd.edu</ce:e-address>
</ce:author>
<ce:author>
<ce:given-name>Dongqing</ce:given-name>
<ce:surname>Wang</ce:surname>
<ce:cross-ref refid="FN1">
<ce:sup>1</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Yanqiang</ce:given-name>
<ce:surname>Gao</ce:surname>
<ce:cross-ref refid="FN2">
<ce:sup>2</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:affiliation>
<ce:textfn>Department of Structural Engineering, MC-0085, University of California, San Diego, La Jolla, CA 92093-0085, USA</ce:textfn>
</ce:affiliation>
<ce:correspondence id="CORR1">
<ce:label>*</ce:label>
<ce:text>Corresponding author. Tel.: +1-858-534-6470; fax: +1-858-534-6373</ce:text>
</ce:correspondence>
<ce:footnote id="FN1">
<ce:label>1</ce:label>
<ce:note-para>Now with Mobile Tool International, Westminster, CO.</ce:note-para>
</ce:footnote>
<ce:footnote id="FN2">
<ce:label>2</ce:label>
<ce:note-para>Now with Berger/ABAM, Seattle, WA.</ce:note-para>
</ce:footnote>
</ce:author-group>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>Due to their lightweight, ease of installation in the field, and potential life-cycle durability, fiber reinforced composites are increasingly being considered in applications such as replacement bridge decks. However, current costs associated with the fabrication of such decks are 4–5 times that of conventional reinforced concrete decks thus placing great importance on the development of cost-effective processes such as resin infusion. This paper describes results of a test program aimed at the assessment of two different resin infusion schemes for the fabrication of foam core filled truss-type bridge decks. Model flow studies and simple analytical procedures are used to assess flow phenomena. The results of process and performance comparisons show that although the use of a microgroove network can be more efficient than the use of a high-permeable medium, in terms of rate of infusion, and global structural performance may be comparable, there is a greater likelihood of defect formation. Process induced defect formation is different in the two schemes with the former having a higher susceptibility for localized effects. Defect types are identified, and comparisons of performance are made at both a local and global level.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords class="keyword">
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>E-Glass</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Vinylester</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Bridge decks</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Resin infusion</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Microgrooves</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>High permeability layer</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Shrinkage</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Processing and performance of bridge deck subcomponents using two schemes of resin infusion</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Processing and performance of bridge deck subcomponents using two schemes of resin infusion</title>
</titleInfo>
<name type="personal">
<namePart type="given">Vistasp M</namePart>
<namePart type="family">Karbhari</namePart>
<affiliation>Department of Structural Engineering, MC-0085, University of California, San Diego, La Jolla, CA 92093-0085, USA</affiliation>
<affiliation>E-mail: vkarbhari@ucsd.edu</affiliation>
<description>Corresponding author. Tel.: +1-858-534-6470; fax: +1-858-534-6373</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dongqing</namePart>
<namePart type="family">Wang</namePart>
<affiliation>Department of Structural Engineering, MC-0085, University of California, San Diego, La Jolla, CA 92093-0085, USA</affiliation>
<description>Now with Mobile Tool International, Westminster, CO.</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yanqiang</namePart>
<namePart type="family">Gao</namePart>
<affiliation>Department of Structural Engineering, MC-0085, University of California, San Diego, La Jolla, CA 92093-0085, USA</affiliation>
<description>Now with Berger/ABAM, Seattle, WA.</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article"></genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">2001</dateIssued>
<copyrightDate encoding="w3cdtf">2001</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">Due to their lightweight, ease of installation in the field, and potential life-cycle durability, fiber reinforced composites are increasingly being considered in applications such as replacement bridge decks. However, current costs associated with the fabrication of such decks are 4–5 times that of conventional reinforced concrete decks thus placing great importance on the development of cost-effective processes such as resin infusion. This paper describes results of a test program aimed at the assessment of two different resin infusion schemes for the fabrication of foam core filled truss-type bridge decks. Model flow studies and simple analytical procedures are used to assess flow phenomena. The results of process and performance comparisons show that although the use of a microgroove network can be more efficient than the use of a high-permeable medium, in terms of rate of infusion, and global structural performance may be comparable, there is a greater likelihood of defect formation. Process induced defect formation is different in the two schemes with the former having a higher susceptibility for localized effects. Defect types are identified, and comparisons of performance are made at both a local and global level.</abstract>
<note type="content">Fig. 1: Deterioration of deck top surface to the level of reinforcing steel.</note>
<note type="content">Fig. 2: Severe degradation of decks leading to through-thickness holes.</note>
<note type="content">Fig. 3: Schematic of progression of flow in SCRIMP.</note>
<note type="content">Fig. 4: Schematic of progression of flow in the microgroove variation of resin infusion.</note>
<note type="content">Fig. 5: Schematic of the 17-cell component.</note>
<note type="content">Fig. 6: Test setup for component response characterization.</note>
<note type="content">Fig. 7: Comparison of fill times resulting from the use of: (a) distribution medium; (b) microgroove-based infusion techniques.</note>
<note type="content">Fig. 8: Effect of microgroove dimensions on equivalent permeability.</note>
<note type="content">Fig. 9: Comparison of effects of preform permeability and groove width on equivalent permeability for α=0.1 and groove height of 0.005 m.</note>
<note type="content">Fig. 10: Effect of α on equivalent permeability for a five harness satin weave with K=336 darcy: (a) as a function of microgroove depth for W=0.005 m; (b) as a function of microgroove width for H=0.008 m.</note>
<note type="content">Fig. 11: Schematic of configuration for determination of lead–lag distance due to flow in the preform resulting from infusion from a groove.</note>
<note type="content">Fig. 12: Load–deflection (center-span) envelopes for the three components.</note>
<note type="content">Fig. 13: (a) Close-up of lower node showing initiation of vertical crack between preform elements and the horizontal crack between individual wrapped cores and the face sheets; (b) close-up showing kinked bifurcated crack at the top node; (c) close-up showing formation of separation cracks at the bottom node and a kinked (oblique and horizontal) crack at the top node.</note>
<note type="content">Fig. 14: Potential process induced defects including: (a) resin rich areas around corners; (b) fabric movement, wrinkling, and bulging in the nodal area.</note>
<note type="content">Fig. 15: Dry spots and planes caused by movement of the dry preform prior to resin infusion in the nodal region.</note>
<note type="content">Table 1: Comparative costs of deck systems</note>
<note type="content">Table 2: Details of non-woven fabrics used in the preform</note>
<note type="content">Table 3: Configurational details of subcomponent</note>
<note type="content">Table 4: Comparison of fill times using distribution media</note>
<note type="content">Table 5: Effect of preform thickness and permeability ratio on lead/lag distance for grooves of width 4 mm</note>
<note type="content">Table 6: Comparison of response characteristics</note>
<note type="content">Table 7: Overall comparison of SBS strength from specimens cut from each subcomponent</note>
<note type="content">Table 8: Results of DMTA tests</note>
<subject>
<genre>Keywords</genre>
<topic>E-Glass</topic>
<topic>Vinylester</topic>
<topic>Bridge decks</topic>
<topic>Resin infusion</topic>
<topic>Microgrooves</topic>
<topic>High permeability layer</topic>
<topic>Shrinkage</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Composite Structures</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>COST</title>
</titleInfo>
<genre type="journal">journal</genre>
<originInfo>
<dateIssued encoding="w3cdtf">200103</dateIssued>
</originInfo>
<identifier type="ISSN">0263-8223</identifier>
<identifier type="PII">S0263-8223(00)X0067-0</identifier>
<part>
<date>200103</date>
<detail type="volume">
<number>51</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>3</number>
<caption>no.</caption>
</detail>
<extent unit="issue pages">
<start>205</start>
<end>334</end>
</extent>
<extent unit="pages">
<start>257</start>
<end>271</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">1F493602E9E36F10BFF23C1E12399D3F7BB48F33</identifier>
<identifier type="DOI">10.1016/S0263-8223(00)00136-7</identifier>
<identifier type="PII">S0263-8223(00)00136-7</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©2001 Elsevier Science Ltd</accessCondition>
<recordInfo>
<recordContentSource>ELSEVIER</recordContentSource>
<recordOrigin>Elsevier Science Ltd, ©2001</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001199 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001199 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:1F493602E9E36F10BFF23C1E12399D3F7BB48F33
   |texte=   Processing and performance of bridge deck subcomponents using two schemes of resin infusion
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024