Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Inorganic perchlorato complexes

Identifieur interne : 001198 ( Istex/Corpus ); précédent : 001197; suivant : 001199

Inorganic perchlorato complexes

Auteurs : Jean-Louis Pascal ; Frédéric Favier

Source :

RBID : ISTEX:457EC78732F4BD495FE013260C2F36BE5DE6BF7F

Abstract

A summary is given of the synthesis of non-solvated inorganic perchlorato complexes and their structural characterization. The synthesis of perchlorato complexes has been extended to many elements of the periodic table by the use of efficient perchlorating reagents such as perchloric acid, HClO4–Cl2O7 oleums and chlorine trioxide, Cl2O6. X-ray diffraction, EXAFS and vibrational spectroscopy show that the perchlorato ligand, [ClO4], can be strongly bonded to metals in various bonding arrangements: monodentate, bridging or chelating bidentate, simply bridging or simultaneously bridging and chelating tridentate. It is mostly an assembling ligand.

Url:
DOI: 10.1016/S0010-8545(98)00102-7

Links to Exploration step

ISTEX:457EC78732F4BD495FE013260C2F36BE5DE6BF7F

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Inorganic perchlorato complexes</title>
<author>
<name sortKey="Pascal, Jean Louis" sort="Pascal, Jean Louis" uniqKey="Pascal J" first="Jean-Louis" last="Pascal">Jean-Louis Pascal</name>
<affiliation>
<mods:affiliation>Laboratoire des Agrégats Moléculaires et Matériaux Inorganiques, ESA 5072, Université Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Favier, Frederic" sort="Favier, Frederic" uniqKey="Favier F" first="Frédéric" last="Favier">Frédéric Favier</name>
<affiliation>
<mods:affiliation>Laboratoire des Agrégats Moléculaires et Matériaux Inorganiques, ESA 5072, Université Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:457EC78732F4BD495FE013260C2F36BE5DE6BF7F</idno>
<date when="1998" year="1998">1998</date>
<idno type="doi">10.1016/S0010-8545(98)00102-7</idno>
<idno type="url">https://api.istex.fr/document/457EC78732F4BD495FE013260C2F36BE5DE6BF7F/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001198</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001198</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Inorganic perchlorato complexes</title>
<author>
<name sortKey="Pascal, Jean Louis" sort="Pascal, Jean Louis" uniqKey="Pascal J" first="Jean-Louis" last="Pascal">Jean-Louis Pascal</name>
<affiliation>
<mods:affiliation>Laboratoire des Agrégats Moléculaires et Matériaux Inorganiques, ESA 5072, Université Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Favier, Frederic" sort="Favier, Frederic" uniqKey="Favier F" first="Frédéric" last="Favier">Frédéric Favier</name>
<affiliation>
<mods:affiliation>Laboratoire des Agrégats Moléculaires et Matériaux Inorganiques, ESA 5072, Université Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Coordination Chemistry Reviews</title>
<title level="j" type="abbrev">CCR</title>
<idno type="ISSN">0010-8545</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1998">1998</date>
<biblScope unit="volume">178–180</biblScope>
<biblScope unit="supplement">P1</biblScope>
<biblScope unit="page" from="865">865</biblScope>
<biblScope unit="page" to="902">902</biblScope>
</imprint>
<idno type="ISSN">0010-8545</idno>
</series>
<idno type="istex">457EC78732F4BD495FE013260C2F36BE5DE6BF7F</idno>
<idno type="DOI">10.1016/S0010-8545(98)00102-7</idno>
<idno type="PII">S0010-8545(98)00102-7</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0010-8545</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A summary is given of the synthesis of non-solvated inorganic perchlorato complexes and their structural characterization. The synthesis of perchlorato complexes has been extended to many elements of the periodic table by the use of efficient perchlorating reagents such as perchloric acid, HClO4–Cl2O7 oleums and chlorine trioxide, Cl2O6. X-ray diffraction, EXAFS and vibrational spectroscopy show that the perchlorato ligand, [ClO4], can be strongly bonded to metals in various bonding arrangements: monodentate, bridging or chelating bidentate, simply bridging or simultaneously bridging and chelating tridentate. It is mostly an assembling ligand.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<author>
<json:item>
<name>Jean-Louis Pascal</name>
<affiliations>
<json:string>Laboratoire des Agrégats Moléculaires et Matériaux Inorganiques, ESA 5072, Université Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Frédéric Favier</name>
<affiliations>
<json:string>Laboratoire des Agrégats Moléculaires et Matériaux Inorganiques, ESA 5072, Université Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5, France</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Chlorine trioxide</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Diffraction</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Non-solvated</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Perchlorato</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Synthesis</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Vibrational spectroscopy</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>A summary is given of the synthesis of non-solvated inorganic perchlorato complexes and their structural characterization. The synthesis of perchlorato complexes has been extended to many elements of the periodic table by the use of efficient perchlorating reagents such as perchloric acid, HClO4–Cl2O7 oleums and chlorine trioxide, Cl2O6. X-ray diffraction, EXAFS and vibrational spectroscopy show that the perchlorato ligand, [ClO4], can be strongly bonded to metals in various bonding arrangements: monodentate, bridging or chelating bidentate, simply bridging or simultaneously bridging and chelating tridentate. It is mostly an assembling ligand.</abstract>
<qualityIndicators>
<score>6.068</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>468 x 680 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>6</keywordCount>
<abstractCharCount>651</abstractCharCount>
<pdfWordCount>13973</pdfWordCount>
<pdfCharCount>71099</pdfCharCount>
<pdfPageCount>38</pdfPageCount>
<abstractWordCount>89</abstractWordCount>
</qualityIndicators>
<title>Inorganic perchlorato complexes</title>
<pii>
<json:string>S0010-8545(98)00102-7</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>178–180</volume>
<pii>
<json:string>S0010-8545(00)X0023-9</json:string>
</pii>
<pages>
<last>902</last>
<first>865</first>
</pages>
<issn>
<json:string>0010-8545</json:string>
</issn>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<title>Coordination Chemistry Reviews</title>
<publicationDate>1998</publicationDate>
</host>
<categories>
<wos>
<json:string>CHEMISTRY, INORGANIC & NUCLEAR</json:string>
</wos>
</categories>
<publicationDate>1998</publicationDate>
<copyrightDate>1998</copyrightDate>
<doi>
<json:string>10.1016/S0010-8545(98)00102-7</json:string>
</doi>
<id>457EC78732F4BD495FE013260C2F36BE5DE6BF7F</id>
<score>0.045823053</score>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/457EC78732F4BD495FE013260C2F36BE5DE6BF7F/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/457EC78732F4BD495FE013260C2F36BE5DE6BF7F/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/457EC78732F4BD495FE013260C2F36BE5DE6BF7F/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Inorganic perchlorato complexes</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>©1998 Elsevier Science S.A.</p>
</availability>
<date>1998</date>
</publicationStmt>
<notesStmt>
<note type="content">Fig. 1: Pyrex vacuum line for the synthesis of chlorine trioxide and anhydrous perchlorato complexes: (a) Synthesis of ClO2 at 50 °C [2KClO3+2H2SO4(5N)+H2C2O4·2H2O→2ClO2+2CO2+4H2O+2KHSO4]; (b) P4O10 columns; (c) synthesis of Cl2O6 (2ClO2+2O3→Cl2O6+2O2) at 10 °C; (d) Cl2O6 trap (0 °C); (e) distilled Cl2O6 (−25 °C); (f) perchlorato complex synthesis; (g) 4l bulb to collect evolved gases; (h) Rotaflo valve; (i) Rotulex joint; (1) O3/O2 mixture from a Siemens type ozonizer; (2) to H2SO4 traps and fume hood; (3) to vacuum line; (4) to IR cell (matrix type) or HClO4 storage ampoule.</note>
<note type="content">Fig. 2: Molecular structure of Sn(ClO4)2−6 anion from Ref. [146]. Mean distances: Sn–O=2.03Å, Cl–Ob=1.49Å; Cl–Ot=1.40Å.</note>
<note type="content">Fig. 3: Molecular structure of Sb2Cl6(O)(OH)ClO4 from Ref. [146]. The crystal structure shows two independent units linked to each other through medium strength hydrogen bonds (O···O=2.65Å) in an approximate cross arrangement. Mean distances and angles: Sb–Cl=2.28Å, Sb–O(OH)=2.00Å, Sb–Ob=2.22Å, Cl–Ob=1.48Å; Cl–Ot=1.39Å; Ob–Cl–Ob=106°; Ot–Cl–Ot=115°.</note>
<note type="content">Fig. 4: Molecular structure of dimeric Sn3O2Cl4(ClO4)4 from Ref. [143]. ClM and ClB correspond to mono and bidentate [ClO4], respectively. The mean Sn–O distances in the rutile type skeleton with planar tricoordinated oxygen atoms lie around 2.06Å. Other characteristic mean distances and angles: Sn–Ob=2.11Å, Sn–Ob′=2.09Å, ClB–Ob=1.47Å; ClM–Ob′=1.50Å; ClB–Ot=1.34Å; ClM–Ot′=1.39Å; Ob–ClB–Ob=107°; Ot–ClB–Ot=150°, Ot′–ClM–Ob′=107°; Ot′–ClM–Ot′=180°.</note>
<note type="content">Fig. 5: Molecular structure of Ti(ClO4)4 from Ref. [65]. Mean distances and angles: Ti–Ob=2.07Å, Cl–Ob=1.39Å; Cl–Ot=1.51Å; Ob–Cl–Ob=97°; Ot–Cl–Ot=115°.</note>
<note type="content">Fig. 6: Coordination shell around Ni and Co in Ni(ClO4)2 and Co(ClO4)2 from Ref. [107]. The [ClO4] bridging tridentate is characterized by: Ni–Ob=2.04Å, Cl–Ob=1.44Å, Cl–Ot=1.39Å; Co–Ob=2.09Å; Ni···Ni=4.80Å; Ni or Co···Cl=3.25Å. The interplanar metallic distance in the layered arrangement is 7.28Å.</note>
<note type="content">Fig. 7: Molecular structure of Eu(ClO4)3 displaying the Eu coordination shell, a slightly distorted tricapped trigonal prism, and bridging tridentate [ClO4] groups [32]. Characteristic distances are: Eu–Ob=2.47Å, Eu–Ob′=2.40Å, Cl–Ob=1.45Å, Cl–Ot=1.39Å, Cl–Ob′=1.47Å, Eu···Eu=5.73Å.</note>
<note type="content">Fig. 8: Molecular structure of Yb(ClO4)3·H2O from Ref. [158], displaying the ytterbium coordination shell, a fairly distorted square antiprism, and the bridging bidentate and tridentate [ClO4] groups. Yb–Ow(H2O) 2.25Å; bridging bidentate: Yb–Ob=2.29Å, ClB–Ob=1.44Å, ClB-Ot′(t″)=1.41Å, Ot′–ClB–Ot″=114°, Ob–ClB–Ob=106°; bridging tridentate: Yb–Ob′=2.31Å, Yb–Ob″=2.49Å, Yb–Ob‴=2.35Å, ClT–Ot=1.40Å, ClT–Ob′=1.45Å, ClT–Ob″=1.42Å, ClT–Ob‴=1.45Å, Ot-ClT–Ob″=112°, Ob″-ClT–Ob‴=107°.</note>
<note type="content">Fig. 9: Molecular structure of Lu(ClO4)3, from Ref. [32], displaying the lutetium coordination shell, a tricaped trigonal antiprism, and the bridging chelating tridentate [ClO4] groups. Lu–Ob′=2.45Å, Lu–Ob″=2.40Å, Lu–Ob‴=2.28Å, Cl–Ot=1.37Å, Cl–Ob and Cl–Ob′=1.43Å, Cl–Ob″=1.45Å, Ob–Cl–Ob′=103.7°, Ot–Cl–Ob′=113.9°, Ot–Cl–Ob″=111.7°. The structure is layered with mean Lu···Lu distances=6.16Å.</note>
<note type="content">Fig. 10: One set of the disordered atoms in Cu(ClO4)2 from Ref. [112]. Mean bond lengths and angles: Cu–Ob=Cu–Ob′=1.96Å, Cu–Ob″=2.46Å, Cl–Ob=1.46Å, Cl–Ob′=1.51Å, Cl–Ob″=1.43Å, Cl–Ot=1.42Å, Ob–Cl–Ob′=111°, Ob″–Cl-Ot=118°, Ob′–Cl–Ot=104°. Cu···Cu distances range from 4.58 to 6.27Å.</note>
<note type="content">Fig. 11: Plot of M–O distances related to effective ionic radii (eir) [160]. 1—HClO4, 2—Cl2O7, 3—Cu(ClO4)2, 4—Ga(ClO4)3, 5—Sn(ClO4)2−6, 6—Ni(ClO4)2, 7—Zn(ClO4)2, 8—Co(ClO4)−3, 9—Ti(ClO4)4, 10—Co(ClO4)2, 11—In(ClO4)3, 12—Hf(ClO4)4, 13—Zr(ClO4)4, 14—Lu(ClO4)3, 15—Yb(ClO4)3 (LT), 16—Yb(ClO4)3 (HT), 17—Eu(ClO4)3, 18—Bi2(ClO4)4−10, 19—Sb2Cl6O(OH)ClO4, 20—Sn3O2Cl4(ClO4)4 (five-coordination around Sn), 21—Sn3O2Cl4(ClO4)4 (six-coordination around Sn), 22—Yb(ClO4)3·H2O, 23—Nd2(OH)3(ClO4)3·5H2O, 24—Pr2(OH)3H2O(ClO4)3. The curve fit, dM–O=1.23+0.98 eir, was calculated from complexes including exclusively ClO4 as a ligand (open triangles). Shaded circles correspond to complexes incorporating more basic ligands than ClO4: O, OH, H2O, and it is clearly show that with small metallic eir, [ClO4] is scattered out the coordination sphere while with greater eir, [ClO4] draws nearer.</note>
<note type="content">Fig. 12: Raman spectrum of HgClClO4. (1) lattice vibrations, (2) νsHgCl+, (3) νasHgCl+, (3) νHgCl(?), (4) δsClO−4, (5) δasClO−4, (6) νsClO−4, (7) νasClO−4, HgCl+ was assumed to be polymeric cation (HgCl)n+n [115].</note>
<note type="content">Fig. 13: IR and Raman spectra of GeCl3ClO4. (1) lattice vibrations+def. GeCl3+δGeOCl, (2) ρrClO3, (3) νsGeCl3, (4) νasGeCl3+δsClO4, (5) δasClO4, (6) νGeO(ClO4), (7) νClOb, (8) νsCIOt, (9) νasClOt. def: deformation including δ and ρ; Ob: bridging oxygen; Ot: non bonded Cl–O.</note>
<note type="content">Fig. 14: IR and Raman spectra of Sb2Cl6(O)(OH)ClO4. (1) lattice vibrations, (2) νSbO(ClO4), (3)+(4) νs, νasSbCl+νSbO[SbO(OH)Sb ring]+δClOb+ρt, (5) δClOt+ρw+ρr, (6) νs, νasClOb, (7) νsClOt, (8) νasClOt. Formulae units are linked together through medium strength hydrogen bonds (O···O=2.65Å) with corresponding broad bands between 2000 and 3600cm−1 and lines in the range 2550–3500cm−1.</note>
<note type="content">Fig. 15: IR and Raman spectra of Sc(ClO4)3. Bridging bidentate [ClO4] involved in a layered bidimentional polymeric unit (c.f. Ga(ClO4)3 [137]) (1) lattice vibrations, (2) νScO(ClO4), (3) δClOb+ρt, (4) δClOt+ρw+ρr, (5) νs, νasClOb, (6) νsClOt, (7) νasClOt.</note>
<note type="content">Fig. 16: Raman spectra of Ti(ClO4)4. (1) lattice vibrations+TiO8 deformations, (2) νsTiO(ClO4), (3) νasTiO(ClO4), (4) δClOb, (5) ρt, (6) δClOt, (7) ρw, (8) ρr, (9) νasClOb, (10) νsClOb, (11) νsClOt, (12) νasClOt. The high frequencies of ρt and ρr are characteristic of chelating bidentate [ClO4].</note>
<note type="content">Fig. 17: IR and Raman spectra of Ni(ClO4)2. (1) νNiO(ClO4), (2) ρr, (3) δs, δasClOb, (4) νsClOb, (5) νasClOb, (6) νClOt.</note>
<note type="content">Fig. 18: Raman spectrum of the low temperature (a) and high temperature (b) forms of Yb(ClO4)3 showing the spectral differences between bridging tridentate (a) and bridging chelating tridentate (b) [ClO4] groups. (1) ρr, (2) δs, δasClOb, (3) νsClOb, (4) νasClOb, (5) νClOt.</note>
<note type="content">Fig. 19: IR and Raman spectra of ClO2Er(ClO4)4. Characteristic ClO+2 bands and lines: (2) δClO2, (6) νsClO2, (9) νasClO2, other bands and lines are assigned to a bidentate [ClO4]: (1) δClOb+ρt, (3) δClOt+ρw+ρr, (4) νasClOb, (5) νsClOb, (7) νsClOt, (8) νasClOt.</note>
<note type="content">Fig. 20: Raman spectrum of Pr(ClO4)3·Cl2O6. (1) Pr(ClO4)3, (2) ionic Cl2O6, (3) covalent Cl2O6.</note>
<note type="content">Fig. 21: IR and Raman spectra of NO2Ni(ClO4)3. Characteristic NO+2 bands and lines: (4) δNO+2, (10) νsNO+2, (11) νasNO+2, (12) νs+νasNO+2, other bands and lines are assigned to a bidendate [ClO4] : (1) lattice vibrations, (2) νNiO(ClO4), (3) δsClOb+ρt, (5) δasClOt+ρw+ρr, (6) νsClOb, (7) νasClOb, (8) νsClOt, (9) νasClOt.</note>
<note type="content">Fig. 22: Plot of Cl–O bond length against [(ν2s+ν2as)/2]1/2. 1—ClOClO3, 2—FOClO3, 3—Cl2O7, 4—HClO4, 5—Sn(ClO4)2−6, 6—Sb2Cl6O(OH)ClO4, 7—Ti(ClO4)4, 8—Zr(ClO4)4, 9—Hf(ClO4)4, 10—Sn3O2Cl4(ClO4)4 (bidentate), 11—Cu(ClO4)2, 12—Yb(ClO4)3 (HT), 13—Ni(ClO4)2, 14—ClO−4, 15—Yb(ClO4)3 (LT), 16—Sn3O2Cl4(ClO4)4 (monodentate).</note>
<note type="content">Fig. 23: Nanosized particles of EuOCl obtained from decomposition of Eu(ClO4)3 at 280 °C under vacuum (1.33Pa).</note>
<note type="content">Table 1: Main perchlorating reagents</note>
<note type="content">Table 2: Synthesis of perchlorato complexes by the use of HClO4</note>
<note type="content">Table 3: Reactivity of Cl2O6 towards metallic chlorides</note>
<note type="content">Table 4: Reactivity of Cl2O6 towards metals, oxides, nitrates, carbonates and hydrated perchlorates</note>
<note type="content">Table 5: Classification of ClO−4 towards some anions, groups and molecules</note>
<note type="content">Table 6: State of the art in the knowledge of inorganic perchlorato complexes</note>
<note type="content">Table 7: Normal modes of vibration of perchlorate</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Inorganic perchlorato complexes</title>
<author xml:id="author-1">
<persName>
<forename type="first">Jean-Louis</forename>
<surname>Pascal</surname>
</persName>
<note type="correspondence">
<p>Corresponding author. Tel: 00 33 4 67 14 33 32; Fax: 00 33 4 67 14 3304; e-mail: pasfav@univ-montp2.fr</p>
</note>
<affiliation>Laboratoire des Agrégats Moléculaires et Matériaux Inorganiques, ESA 5072, Université Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5, France</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Frédéric</forename>
<surname>Favier</surname>
</persName>
<affiliation>Laboratoire des Agrégats Moléculaires et Matériaux Inorganiques, ESA 5072, Université Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5, France</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Coordination Chemistry Reviews</title>
<title level="j" type="abbrev">CCR</title>
<idno type="pISSN">0010-8545</idno>
<idno type="PII">S0010-8545(00)X0023-9</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1998"></date>
<biblScope unit="volume">178–180</biblScope>
<biblScope unit="supplement">P1</biblScope>
<biblScope unit="page" from="865">865</biblScope>
<biblScope unit="page" to="902">902</biblScope>
</imprint>
</monogr>
<idno type="istex">457EC78732F4BD495FE013260C2F36BE5DE6BF7F</idno>
<idno type="DOI">10.1016/S0010-8545(98)00102-7</idno>
<idno type="PII">S0010-8545(98)00102-7</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1998</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>A summary is given of the synthesis of non-solvated inorganic perchlorato complexes and their structural characterization. The synthesis of perchlorato complexes has been extended to many elements of the periodic table by the use of efficient perchlorating reagents such as perchloric acid, HClO4–Cl2O7 oleums and chlorine trioxide, Cl2O6. X-ray diffraction, EXAFS and vibrational spectroscopy show that the perchlorato ligand, [ClO4], can be strongly bonded to metals in various bonding arrangements: monodentate, bridging or chelating bidentate, simply bridging or simultaneously bridging and chelating tridentate. It is mostly an assembling ligand.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Chlorine trioxide</term>
</item>
<item>
<term>Diffraction</term>
</item>
<item>
<term>Non-solvated</term>
</item>
<item>
<term>Perchlorato</term>
</item>
<item>
<term>Synthesis</term>
</item>
<item>
<term>Vibrational spectroscopy</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1998">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/457EC78732F4BD495FE013260C2F36BE5DE6BF7F/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="fx1" NDATA="IMAGE" name="fx1"></istex:entity>
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="gr1"></istex:entity>
<istex:entity SYSTEM="fx2" NDATA="IMAGE" name="fx2"></istex:entity>
<istex:entity SYSTEM="fx3" NDATA="IMAGE" name="fx3"></istex:entity>
<istex:entity SYSTEM="fx4" NDATA="IMAGE" name="fx4"></istex:entity>
<istex:entity SYSTEM="fx5" NDATA="IMAGE" name="fx5"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="gr2"></istex:entity>
<istex:entity SYSTEM="gr3" NDATA="IMAGE" name="gr3"></istex:entity>
<istex:entity SYSTEM="gr4" NDATA="IMAGE" name="gr4"></istex:entity>
<istex:entity SYSTEM="gr5" NDATA="IMAGE" name="gr5"></istex:entity>
<istex:entity SYSTEM="gr6" NDATA="IMAGE" name="gr6"></istex:entity>
<istex:entity SYSTEM="gr7" NDATA="IMAGE" name="gr7"></istex:entity>
<istex:entity SYSTEM="gr8" NDATA="IMAGE" name="gr8"></istex:entity>
<istex:entity SYSTEM="gr9" NDATA="IMAGE" name="gr9"></istex:entity>
<istex:entity SYSTEM="gr10" NDATA="IMAGE" name="gr10"></istex:entity>
<istex:entity SYSTEM="gr11" NDATA="IMAGE" name="gr11"></istex:entity>
<istex:entity SYSTEM="fx6" NDATA="IMAGE" name="fx6"></istex:entity>
<istex:entity SYSTEM="gr12" NDATA="IMAGE" name="gr12"></istex:entity>
<istex:entity SYSTEM="gr13" NDATA="IMAGE" name="gr13"></istex:entity>
<istex:entity SYSTEM="gr14" NDATA="IMAGE" name="gr14"></istex:entity>
<istex:entity SYSTEM="gr15" NDATA="IMAGE" name="gr15"></istex:entity>
<istex:entity SYSTEM="gr16" NDATA="IMAGE" name="gr16"></istex:entity>
<istex:entity SYSTEM="gr17" NDATA="IMAGE" name="gr17"></istex:entity>
<istex:entity SYSTEM="gr18" NDATA="IMAGE" name="gr18"></istex:entity>
<istex:entity SYSTEM="gr19" NDATA="IMAGE" name="gr19"></istex:entity>
<istex:entity SYSTEM="gr20" NDATA="IMAGE" name="gr20"></istex:entity>
<istex:entity SYSTEM="gr21" NDATA="IMAGE" name="gr21"></istex:entity>
<istex:entity SYSTEM="gr22" NDATA="IMAGE" name="gr22"></istex:entity>
<istex:entity SYSTEM="gr23" NDATA="IMAGE" name="gr23"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>CCR</jid>
<aid>9286</aid>
<ce:pii>S0010-8545(98)00102-7</ce:pii>
<ce:doi>10.1016/S0010-8545(98)00102-7</ce:doi>
<ce:copyright year="1998" type="full-transfer">Elsevier Science S.A.</ce:copyright>
</item-info>
<head>
<ce:title>Inorganic perchlorato complexes</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Jean-Louis</ce:given-name>
<ce:surname>Pascal</ce:surname>
<ce:cross-ref refid="CORR1">*</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Frédéric</ce:given-name>
<ce:surname>Favier</ce:surname>
</ce:author>
<ce:affiliation>
<ce:textfn>Laboratoire des Agrégats Moléculaires et Matériaux Inorganiques, ESA 5072, Université Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5, France</ce:textfn>
</ce:affiliation>
<ce:correspondence id="CORR1">
<ce:label>*</ce:label>
<ce:text>Corresponding author. Tel: 00 33 4 67 14 33 32; Fax: 00 33 4 67 14 3304; e-mail: pasfav@univ-montp2.fr</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>A summary is given of the synthesis of non-solvated inorganic perchlorato complexes and their structural characterization. The synthesis of perchlorato complexes has been extended to many elements of the periodic table by the use of efficient perchlorating reagents such as perchloric acid, HClO
<ce:inf>4</ce:inf>
–Cl
<ce:inf>2</ce:inf>
O
<ce:inf>7</ce:inf>
oleums and chlorine trioxide, Cl
<ce:inf>2</ce:inf>
O
<ce:inf>6</ce:inf>
. X-ray diffraction, EXAFS and vibrational spectroscopy show that the perchlorato ligand, [ClO
<ce:inf>4</ce:inf>
], can be strongly bonded to metals in various bonding arrangements: monodentate, bridging or chelating bidentate, simply bridging or simultaneously bridging and chelating tridentate. It is mostly an assembling ligand.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords class="keyword">
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>Chlorine trioxide</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Diffraction</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Non-solvated</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Perchlorato</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Synthesis</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Vibrational spectroscopy</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Inorganic perchlorato complexes</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Inorganic perchlorato complexes</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jean-Louis</namePart>
<namePart type="family">Pascal</namePart>
<affiliation>Laboratoire des Agrégats Moléculaires et Matériaux Inorganiques, ESA 5072, Université Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5, France</affiliation>
<description>Corresponding author. Tel: 00 33 4 67 14 33 32; Fax: 00 33 4 67 14 3304; e-mail: pasfav@univ-montp2.fr</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Favier</namePart>
<affiliation>Laboratoire des Agrégats Moléculaires et Matériaux Inorganiques, ESA 5072, Université Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article"></genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1998</dateIssued>
<copyrightDate encoding="w3cdtf">1998</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">A summary is given of the synthesis of non-solvated inorganic perchlorato complexes and their structural characterization. The synthesis of perchlorato complexes has been extended to many elements of the periodic table by the use of efficient perchlorating reagents such as perchloric acid, HClO4–Cl2O7 oleums and chlorine trioxide, Cl2O6. X-ray diffraction, EXAFS and vibrational spectroscopy show that the perchlorato ligand, [ClO4], can be strongly bonded to metals in various bonding arrangements: monodentate, bridging or chelating bidentate, simply bridging or simultaneously bridging and chelating tridentate. It is mostly an assembling ligand.</abstract>
<note type="content">Fig. 1: Pyrex vacuum line for the synthesis of chlorine trioxide and anhydrous perchlorato complexes: (a) Synthesis of ClO2 at 50 °C [2KClO3+2H2SO4(5N)+H2C2O4·2H2O→2ClO2+2CO2+4H2O+2KHSO4]; (b) P4O10 columns; (c) synthesis of Cl2O6 (2ClO2+2O3→Cl2O6+2O2) at 10 °C; (d) Cl2O6 trap (0 °C); (e) distilled Cl2O6 (−25 °C); (f) perchlorato complex synthesis; (g) 4l bulb to collect evolved gases; (h) Rotaflo valve; (i) Rotulex joint; (1) O3/O2 mixture from a Siemens type ozonizer; (2) to H2SO4 traps and fume hood; (3) to vacuum line; (4) to IR cell (matrix type) or HClO4 storage ampoule.</note>
<note type="content">Fig. 2: Molecular structure of Sn(ClO4)2−6 anion from Ref. [146]. Mean distances: Sn–O=2.03Å, Cl–Ob=1.49Å; Cl–Ot=1.40Å.</note>
<note type="content">Fig. 3: Molecular structure of Sb2Cl6(O)(OH)ClO4 from Ref. [146]. The crystal structure shows two independent units linked to each other through medium strength hydrogen bonds (O···O=2.65Å) in an approximate cross arrangement. Mean distances and angles: Sb–Cl=2.28Å, Sb–O(OH)=2.00Å, Sb–Ob=2.22Å, Cl–Ob=1.48Å; Cl–Ot=1.39Å; Ob–Cl–Ob=106°; Ot–Cl–Ot=115°.</note>
<note type="content">Fig. 4: Molecular structure of dimeric Sn3O2Cl4(ClO4)4 from Ref. [143]. ClM and ClB correspond to mono and bidentate [ClO4], respectively. The mean Sn–O distances in the rutile type skeleton with planar tricoordinated oxygen atoms lie around 2.06Å. Other characteristic mean distances and angles: Sn–Ob=2.11Å, Sn–Ob′=2.09Å, ClB–Ob=1.47Å; ClM–Ob′=1.50Å; ClB–Ot=1.34Å; ClM–Ot′=1.39Å; Ob–ClB–Ob=107°; Ot–ClB–Ot=150°, Ot′–ClM–Ob′=107°; Ot′–ClM–Ot′=180°.</note>
<note type="content">Fig. 5: Molecular structure of Ti(ClO4)4 from Ref. [65]. Mean distances and angles: Ti–Ob=2.07Å, Cl–Ob=1.39Å; Cl–Ot=1.51Å; Ob–Cl–Ob=97°; Ot–Cl–Ot=115°.</note>
<note type="content">Fig. 6: Coordination shell around Ni and Co in Ni(ClO4)2 and Co(ClO4)2 from Ref. [107]. The [ClO4] bridging tridentate is characterized by: Ni–Ob=2.04Å, Cl–Ob=1.44Å, Cl–Ot=1.39Å; Co–Ob=2.09Å; Ni···Ni=4.80Å; Ni or Co···Cl=3.25Å. The interplanar metallic distance in the layered arrangement is 7.28Å.</note>
<note type="content">Fig. 7: Molecular structure of Eu(ClO4)3 displaying the Eu coordination shell, a slightly distorted tricapped trigonal prism, and bridging tridentate [ClO4] groups [32]. Characteristic distances are: Eu–Ob=2.47Å, Eu–Ob′=2.40Å, Cl–Ob=1.45Å, Cl–Ot=1.39Å, Cl–Ob′=1.47Å, Eu···Eu=5.73Å.</note>
<note type="content">Fig. 8: Molecular structure of Yb(ClO4)3·H2O from Ref. [158], displaying the ytterbium coordination shell, a fairly distorted square antiprism, and the bridging bidentate and tridentate [ClO4] groups. Yb–Ow(H2O) 2.25Å; bridging bidentate: Yb–Ob=2.29Å, ClB–Ob=1.44Å, ClB-Ot′(t″)=1.41Å, Ot′–ClB–Ot″=114°, Ob–ClB–Ob=106°; bridging tridentate: Yb–Ob′=2.31Å, Yb–Ob″=2.49Å, Yb–Ob‴=2.35Å, ClT–Ot=1.40Å, ClT–Ob′=1.45Å, ClT–Ob″=1.42Å, ClT–Ob‴=1.45Å, Ot-ClT–Ob″=112°, Ob″-ClT–Ob‴=107°.</note>
<note type="content">Fig. 9: Molecular structure of Lu(ClO4)3, from Ref. [32], displaying the lutetium coordination shell, a tricaped trigonal antiprism, and the bridging chelating tridentate [ClO4] groups. Lu–Ob′=2.45Å, Lu–Ob″=2.40Å, Lu–Ob‴=2.28Å, Cl–Ot=1.37Å, Cl–Ob and Cl–Ob′=1.43Å, Cl–Ob″=1.45Å, Ob–Cl–Ob′=103.7°, Ot–Cl–Ob′=113.9°, Ot–Cl–Ob″=111.7°. The structure is layered with mean Lu···Lu distances=6.16Å.</note>
<note type="content">Fig. 10: One set of the disordered atoms in Cu(ClO4)2 from Ref. [112]. Mean bond lengths and angles: Cu–Ob=Cu–Ob′=1.96Å, Cu–Ob″=2.46Å, Cl–Ob=1.46Å, Cl–Ob′=1.51Å, Cl–Ob″=1.43Å, Cl–Ot=1.42Å, Ob–Cl–Ob′=111°, Ob″–Cl-Ot=118°, Ob′–Cl–Ot=104°. Cu···Cu distances range from 4.58 to 6.27Å.</note>
<note type="content">Fig. 11: Plot of M–O distances related to effective ionic radii (eir) [160]. 1—HClO4, 2—Cl2O7, 3—Cu(ClO4)2, 4—Ga(ClO4)3, 5—Sn(ClO4)2−6, 6—Ni(ClO4)2, 7—Zn(ClO4)2, 8—Co(ClO4)−3, 9—Ti(ClO4)4, 10—Co(ClO4)2, 11—In(ClO4)3, 12—Hf(ClO4)4, 13—Zr(ClO4)4, 14—Lu(ClO4)3, 15—Yb(ClO4)3 (LT), 16—Yb(ClO4)3 (HT), 17—Eu(ClO4)3, 18—Bi2(ClO4)4−10, 19—Sb2Cl6O(OH)ClO4, 20—Sn3O2Cl4(ClO4)4 (five-coordination around Sn), 21—Sn3O2Cl4(ClO4)4 (six-coordination around Sn), 22—Yb(ClO4)3·H2O, 23—Nd2(OH)3(ClO4)3·5H2O, 24—Pr2(OH)3H2O(ClO4)3. The curve fit, dM–O=1.23+0.98 eir, was calculated from complexes including exclusively ClO4 as a ligand (open triangles). Shaded circles correspond to complexes incorporating more basic ligands than ClO4: O, OH, H2O, and it is clearly show that with small metallic eir, [ClO4] is scattered out the coordination sphere while with greater eir, [ClO4] draws nearer.</note>
<note type="content">Fig. 12: Raman spectrum of HgClClO4. (1) lattice vibrations, (2) νsHgCl+, (3) νasHgCl+, (3) νHgCl(?), (4) δsClO−4, (5) δasClO−4, (6) νsClO−4, (7) νasClO−4, HgCl+ was assumed to be polymeric cation (HgCl)n+n [115].</note>
<note type="content">Fig. 13: IR and Raman spectra of GeCl3ClO4. (1) lattice vibrations+def. GeCl3+δGeOCl, (2) ρrClO3, (3) νsGeCl3, (4) νasGeCl3+δsClO4, (5) δasClO4, (6) νGeO(ClO4), (7) νClOb, (8) νsCIOt, (9) νasClOt. def: deformation including δ and ρ; Ob: bridging oxygen; Ot: non bonded Cl–O.</note>
<note type="content">Fig. 14: IR and Raman spectra of Sb2Cl6(O)(OH)ClO4. (1) lattice vibrations, (2) νSbO(ClO4), (3)+(4) νs, νasSbCl+νSbO[SbO(OH)Sb ring]+δClOb+ρt, (5) δClOt+ρw+ρr, (6) νs, νasClOb, (7) νsClOt, (8) νasClOt. Formulae units are linked together through medium strength hydrogen bonds (O···O=2.65Å) with corresponding broad bands between 2000 and 3600cm−1 and lines in the range 2550–3500cm−1.</note>
<note type="content">Fig. 15: IR and Raman spectra of Sc(ClO4)3. Bridging bidentate [ClO4] involved in a layered bidimentional polymeric unit (c.f. Ga(ClO4)3 [137]) (1) lattice vibrations, (2) νScO(ClO4), (3) δClOb+ρt, (4) δClOt+ρw+ρr, (5) νs, νasClOb, (6) νsClOt, (7) νasClOt.</note>
<note type="content">Fig. 16: Raman spectra of Ti(ClO4)4. (1) lattice vibrations+TiO8 deformations, (2) νsTiO(ClO4), (3) νasTiO(ClO4), (4) δClOb, (5) ρt, (6) δClOt, (7) ρw, (8) ρr, (9) νasClOb, (10) νsClOb, (11) νsClOt, (12) νasClOt. The high frequencies of ρt and ρr are characteristic of chelating bidentate [ClO4].</note>
<note type="content">Fig. 17: IR and Raman spectra of Ni(ClO4)2. (1) νNiO(ClO4), (2) ρr, (3) δs, δasClOb, (4) νsClOb, (5) νasClOb, (6) νClOt.</note>
<note type="content">Fig. 18: Raman spectrum of the low temperature (a) and high temperature (b) forms of Yb(ClO4)3 showing the spectral differences between bridging tridentate (a) and bridging chelating tridentate (b) [ClO4] groups. (1) ρr, (2) δs, δasClOb, (3) νsClOb, (4) νasClOb, (5) νClOt.</note>
<note type="content">Fig. 19: IR and Raman spectra of ClO2Er(ClO4)4. Characteristic ClO+2 bands and lines: (2) δClO2, (6) νsClO2, (9) νasClO2, other bands and lines are assigned to a bidentate [ClO4]: (1) δClOb+ρt, (3) δClOt+ρw+ρr, (4) νasClOb, (5) νsClOb, (7) νsClOt, (8) νasClOt.</note>
<note type="content">Fig. 20: Raman spectrum of Pr(ClO4)3·Cl2O6. (1) Pr(ClO4)3, (2) ionic Cl2O6, (3) covalent Cl2O6.</note>
<note type="content">Fig. 21: IR and Raman spectra of NO2Ni(ClO4)3. Characteristic NO+2 bands and lines: (4) δNO+2, (10) νsNO+2, (11) νasNO+2, (12) νs+νasNO+2, other bands and lines are assigned to a bidendate [ClO4] : (1) lattice vibrations, (2) νNiO(ClO4), (3) δsClOb+ρt, (5) δasClOt+ρw+ρr, (6) νsClOb, (7) νasClOb, (8) νsClOt, (9) νasClOt.</note>
<note type="content">Fig. 22: Plot of Cl–O bond length against [(ν2s+ν2as)/2]1/2. 1—ClOClO3, 2—FOClO3, 3—Cl2O7, 4—HClO4, 5—Sn(ClO4)2−6, 6—Sb2Cl6O(OH)ClO4, 7—Ti(ClO4)4, 8—Zr(ClO4)4, 9—Hf(ClO4)4, 10—Sn3O2Cl4(ClO4)4 (bidentate), 11—Cu(ClO4)2, 12—Yb(ClO4)3 (HT), 13—Ni(ClO4)2, 14—ClO−4, 15—Yb(ClO4)3 (LT), 16—Sn3O2Cl4(ClO4)4 (monodentate).</note>
<note type="content">Fig. 23: Nanosized particles of EuOCl obtained from decomposition of Eu(ClO4)3 at 280 °C under vacuum (1.33Pa).</note>
<note type="content">Table 1: Main perchlorating reagents</note>
<note type="content">Table 2: Synthesis of perchlorato complexes by the use of HClO4</note>
<note type="content">Table 3: Reactivity of Cl2O6 towards metallic chlorides</note>
<note type="content">Table 4: Reactivity of Cl2O6 towards metals, oxides, nitrates, carbonates and hydrated perchlorates</note>
<note type="content">Table 5: Classification of ClO−4 towards some anions, groups and molecules</note>
<note type="content">Table 6: State of the art in the knowledge of inorganic perchlorato complexes</note>
<note type="content">Table 7: Normal modes of vibration of perchlorate</note>
<subject>
<genre>Keywords</genre>
<topic>Chlorine trioxide</topic>
<topic>Diffraction</topic>
<topic>Non-solvated</topic>
<topic>Perchlorato</topic>
<topic>Synthesis</topic>
<topic>Vibrational spectroscopy</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Coordination Chemistry Reviews</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>CCR</title>
</titleInfo>
<genre type="journal">journal</genre>
<originInfo>
<dateIssued encoding="w3cdtf">199812</dateIssued>
</originInfo>
<identifier type="ISSN">0010-8545</identifier>
<identifier type="PII">S0010-8545(00)X0023-9</identifier>
<part>
<date>199812</date>
<detail type="volume">
<number>178–180</number>
<caption>vol.</caption>
</detail>
<detail type="supplement">
<number>P1</number>
<caption>Suppl.</caption>
</detail>
<extent unit="issue pages">
<start>1</start>
<end>902</end>
</extent>
<extent unit="pages">
<start>865</start>
<end>902</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">457EC78732F4BD495FE013260C2F36BE5DE6BF7F</identifier>
<identifier type="DOI">10.1016/S0010-8545(98)00102-7</identifier>
<identifier type="PII">S0010-8545(98)00102-7</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©1998 Elsevier Science S.A.</accessCondition>
<recordInfo>
<recordContentSource>ELSEVIER</recordContentSource>
<recordOrigin>Elsevier Science S.A., ©1998</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001198 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001198 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:457EC78732F4BD495FE013260C2F36BE5DE6BF7F
   |texte=   Inorganic perchlorato complexes
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024