Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

SQ-Map: efficient layered collision detection and haptic rendering.

Identifieur interne : 001734 ( PubMed/Corpus ); précédent : 001733; suivant : 001735

SQ-Map: efficient layered collision detection and haptic rendering.

Auteurs : Konstantinos Moustakas ; Dimitrios Tzovaras ; Michael Gerassimos Strintzis

Source :

RBID : pubmed:17093338

English descriptors

Abstract

This paper presents a novel layered and fast framework for real-time collision detection and haptic interaction in virtual environments based on superquadric virtual object modeling. An efficient algorithm is initially proposed for decomposing the complex objects into subobjects suitable for superquadric modeling, based on visual salience and curvature constraints. The distance between the superquadrics and the mesh is then projected onto the superquadric surface, thus generating a distance map (SQ-Map). Approximate collision detection is then performed by computing the analytical equations and distance maps instead of triangle per triangle intersection tests. Collision response is then calculated directly from the superquadric models and realistic smooth force feedback is obtained using analytical formulae and local smoothing on the distance map. Experimental evaluation demonstrates that SQ-Map reduces significantly the computational cost when compared to accurate collision detection methods and does not require the huge amounts of memory demanded by distance field-based methods. Finally, force feedback is calculated directly from the distance map and the superquadric formulae.

DOI: 10.1109/TVCG.2007.20
PubMed: 17093338

Links to Exploration step

pubmed:17093338

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">SQ-Map: efficient layered collision detection and haptic rendering.</title>
<author>
<name sortKey="Moustakas, Konstantinos" sort="Moustakas, Konstantinos" uniqKey="Moustakas K" first="Konstantinos" last="Moustakas">Konstantinos Moustakas</name>
<affiliation>
<nlm:affiliation>Electrical and Computer Engineering Department, Aristotle University of Thessaloniki, University Campus, Thessaloniki, Greece. moustak@olympus.ee.auth.gr</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tzovaras, Dimitrios" sort="Tzovaras, Dimitrios" uniqKey="Tzovaras D" first="Dimitrios" last="Tzovaras">Dimitrios Tzovaras</name>
</author>
<author>
<name sortKey="Strintzis, Michael Gerassimos" sort="Strintzis, Michael Gerassimos" uniqKey="Strintzis M" first="Michael Gerassimos" last="Strintzis">Michael Gerassimos Strintzis</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="????">
<PubDate>
<MedlineDate>2007 Jan-Feb</MedlineDate>
</PubDate>
</date>
<idno type="doi">10.1109/TVCG.2007.20</idno>
<idno type="RBID">pubmed:17093338</idno>
<idno type="pmid">17093338</idno>
<idno type="wicri:Area/PubMed/Corpus">001734</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">SQ-Map: efficient layered collision detection and haptic rendering.</title>
<author>
<name sortKey="Moustakas, Konstantinos" sort="Moustakas, Konstantinos" uniqKey="Moustakas K" first="Konstantinos" last="Moustakas">Konstantinos Moustakas</name>
<affiliation>
<nlm:affiliation>Electrical and Computer Engineering Department, Aristotle University of Thessaloniki, University Campus, Thessaloniki, Greece. moustak@olympus.ee.auth.gr</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tzovaras, Dimitrios" sort="Tzovaras, Dimitrios" uniqKey="Tzovaras D" first="Dimitrios" last="Tzovaras">Dimitrios Tzovaras</name>
</author>
<author>
<name sortKey="Strintzis, Michael Gerassimos" sort="Strintzis, Michael Gerassimos" uniqKey="Strintzis M" first="Michael Gerassimos" last="Strintzis">Michael Gerassimos Strintzis</name>
</author>
</analytic>
<series>
<title level="j">IEEE transactions on visualization and computer graphics</title>
<idno type="ISSN">1077-2626</idno>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms</term>
<term>Computer Graphics</term>
<term>Computer Simulation</term>
<term>Feedback (physiology)</term>
<term>Hand (anatomy & histology)</term>
<term>Hand (physiology)</term>
<term>Humans</term>
<term>Image Enhancement (methods)</term>
<term>Image Interpretation, Computer-Assisted (methods)</term>
<term>Imaging, Three-Dimensional (methods)</term>
<term>Information Storage and Retrieval (methods)</term>
<term>Models, Biological</term>
<term>Software</term>
<term>Stress, Mechanical</term>
<term>Touch (physiology)</term>
<term>User-Computer Interface</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Hand</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Image Enhancement</term>
<term>Image Interpretation, Computer-Assisted</term>
<term>Imaging, Three-Dimensional</term>
<term>Information Storage and Retrieval</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Feedback</term>
<term>Hand</term>
<term>Touch</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Computer Graphics</term>
<term>Computer Simulation</term>
<term>Humans</term>
<term>Models, Biological</term>
<term>Software</term>
<term>Stress, Mechanical</term>
<term>User-Computer Interface</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper presents a novel layered and fast framework for real-time collision detection and haptic interaction in virtual environments based on superquadric virtual object modeling. An efficient algorithm is initially proposed for decomposing the complex objects into subobjects suitable for superquadric modeling, based on visual salience and curvature constraints. The distance between the superquadrics and the mesh is then projected onto the superquadric surface, thus generating a distance map (SQ-Map). Approximate collision detection is then performed by computing the analytical equations and distance maps instead of triangle per triangle intersection tests. Collision response is then calculated directly from the superquadric models and realistic smooth force feedback is obtained using analytical formulae and local smoothing on the distance map. Experimental evaluation demonstrates that SQ-Map reduces significantly the computational cost when compared to accurate collision detection methods and does not require the huge amounts of memory demanded by distance field-based methods. Finally, force feedback is calculated directly from the distance map and the superquadric formulae.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">17093338</PMID>
<DateCreated>
<Year>2006</Year>
<Month>11</Month>
<Day>09</Day>
</DateCreated>
<DateCompleted>
<Year>2007</Year>
<Month>02</Month>
<Day>07</Day>
</DateCompleted>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1077-2626</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>13</Volume>
<Issue>1</Issue>
<PubDate>
<MedlineDate>2007 Jan-Feb</MedlineDate>
</PubDate>
</JournalIssue>
<Title>IEEE transactions on visualization and computer graphics</Title>
<ISOAbbreviation>IEEE Trans Vis Comput Graph</ISOAbbreviation>
</Journal>
<ArticleTitle>SQ-Map: efficient layered collision detection and haptic rendering.</ArticleTitle>
<Pagination>
<MedlinePgn>80-93</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>This paper presents a novel layered and fast framework for real-time collision detection and haptic interaction in virtual environments based on superquadric virtual object modeling. An efficient algorithm is initially proposed for decomposing the complex objects into subobjects suitable for superquadric modeling, based on visual salience and curvature constraints. The distance between the superquadrics and the mesh is then projected onto the superquadric surface, thus generating a distance map (SQ-Map). Approximate collision detection is then performed by computing the analytical equations and distance maps instead of triangle per triangle intersection tests. Collision response is then calculated directly from the superquadric models and realistic smooth force feedback is obtained using analytical formulae and local smoothing on the distance map. Experimental evaluation demonstrates that SQ-Map reduces significantly the computational cost when compared to accurate collision detection methods and does not require the huge amounts of memory demanded by distance field-based methods. Finally, force feedback is calculated directly from the distance map and the superquadric formulae.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Moustakas</LastName>
<ForeName>Konstantinos</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Electrical and Computer Engineering Department, Aristotle University of Thessaloniki, University Campus, Thessaloniki, Greece. moustak@olympus.ee.auth.gr</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tzovaras</LastName>
<ForeName>Dimitrios</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Strintzis</LastName>
<ForeName>Michael Gerassimos</ForeName>
<Initials>MG</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>IEEE Trans Vis Comput Graph</MedlineTA>
<NlmUniqueID>9891704</NlmUniqueID>
<ISSNLinking>1077-2626</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D000465">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003196">Computer Graphics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003198">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005246">Feedback</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006225">Hand</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000033">anatomy & histology</QualifierName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D007089">Image Enhancement</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D007090">Image Interpretation, Computer-Assisted</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D021621">Imaging, Three-Dimensional</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D016247">Information Storage and Retrieval</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D008954">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D012984">Software</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013314">Stress, Mechanical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014110">Touch</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D014584">User-Computer Interface</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>11</Month>
<Day>10</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>2</Month>
<Day>8</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>11</Month>
<Day>10</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1109/TVCG.2007.20</ArticleId>
<ArticleId IdType="pubmed">17093338</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001734 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001734 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:17093338
   |texte=   SQ-Map: efficient layered collision detection and haptic rendering.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:17093338" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024