Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Virtual reality to maximize function for hand and arm rehabilitation: exploration of neural mechanisms.

Identifieur interne : 001251 ( PubMed/Corpus ); précédent : 001250; suivant : 001252

Virtual reality to maximize function for hand and arm rehabilitation: exploration of neural mechanisms.

Auteurs : Alma S. Merians ; Eugene Tunik ; Sergei V. Adamovich

Source :

RBID : pubmed:19592790

English descriptors

Abstract

Stroke patients report hand function as the most disabling motor deficit. Current evidence shows that learning new motor skills is essential for inducing functional neuroplasticity and functional recovery. Adaptive training paradigms that continually and interactively move a motor outcome closer to the targeted skill are important to motor recovery. Computerized virtual reality simulations when interfaced with robots, movement tracking and sensing glove systems, are particularly adaptable, allowing for online and offline modifications of task based activities using the participant's current performance and success rate. We have developed a second generation system that can exercise the hand and the arm together or in isolation and provide for both unilateral and bilateral hand and arm activities in three-dimensional space. We demonstrate that by providing haptic assistance for the hand and arm and adaptive anti-gravity support, the system can accommodate patients with lower level impairments. We hypothesize that combining training in virtual environments (VE) with observation of motor actions can bring additional benefits. We present a proof of concept of a novel system that integrates interactive VE with functional neuroimaging to address this issue. Three components of this system are synchronized, the presentation of the visual display of the virtual hands, the collection of fMRI images and the collection of hand joint angles from the instrumented gloves. We show that interactive VEs can facilitate activation of brain areas during training by providing appropriately modified visual feedback. We predict that visual augmentation can become a tool to facilitate functional neuroplasticity.

PubMed: 19592790

Links to Exploration step

pubmed:19592790

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Virtual reality to maximize function for hand and arm rehabilitation: exploration of neural mechanisms.</title>
<author>
<name sortKey="Merians, Alma S" sort="Merians, Alma S" uniqKey="Merians A" first="Alma S" last="Merians">Alma S. Merians</name>
<affiliation>
<nlm:affiliation>Doctoral Programs in Physical Therapy, Department of Rehabilitation and Movement Science, University of Medicine and Dentistry of New Jersey, Newark, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tunik, Eugene" sort="Tunik, Eugene" uniqKey="Tunik E" first="Eugene" last="Tunik">Eugene Tunik</name>
</author>
<author>
<name sortKey="Adamovich, Sergei V" sort="Adamovich, Sergei V" uniqKey="Adamovich S" first="Sergei V" last="Adamovich">Sergei V. Adamovich</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19592790</idno>
<idno type="pmid">19592790</idno>
<idno type="wicri:Area/PubMed/Corpus">001251</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Virtual reality to maximize function for hand and arm rehabilitation: exploration of neural mechanisms.</title>
<author>
<name sortKey="Merians, Alma S" sort="Merians, Alma S" uniqKey="Merians A" first="Alma S" last="Merians">Alma S. Merians</name>
<affiliation>
<nlm:affiliation>Doctoral Programs in Physical Therapy, Department of Rehabilitation and Movement Science, University of Medicine and Dentistry of New Jersey, Newark, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tunik, Eugene" sort="Tunik, Eugene" uniqKey="Tunik E" first="Eugene" last="Tunik">Eugene Tunik</name>
</author>
<author>
<name sortKey="Adamovich, Sergei V" sort="Adamovich, Sergei V" uniqKey="Adamovich S" first="Sergei V" last="Adamovich">Sergei V. Adamovich</name>
</author>
</analytic>
<series>
<title level="j">Studies in health technology and informatics</title>
<idno type="ISSN">0926-9630</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arm (physiopathology)</term>
<term>Cerebral Palsy (rehabilitation)</term>
<term>Computer Simulation</term>
<term>Hand (physiopathology)</term>
<term>Humans</term>
<term>Psychomotor Performance (physiology)</term>
<term>Robotics</term>
<term>Stroke (physiopathology)</term>
<term>Stroke (rehabilitation)</term>
<term>User-Computer Interface</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Psychomotor Performance</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathology" xml:lang="en">
<term>Arm</term>
<term>Hand</term>
<term>Stroke</term>
</keywords>
<keywords scheme="MESH" qualifier="rehabilitation" xml:lang="en">
<term>Cerebral Palsy</term>
<term>Stroke</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Computer Simulation</term>
<term>Humans</term>
<term>Robotics</term>
<term>User-Computer Interface</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Stroke patients report hand function as the most disabling motor deficit. Current evidence shows that learning new motor skills is essential for inducing functional neuroplasticity and functional recovery. Adaptive training paradigms that continually and interactively move a motor outcome closer to the targeted skill are important to motor recovery. Computerized virtual reality simulations when interfaced with robots, movement tracking and sensing glove systems, are particularly adaptable, allowing for online and offline modifications of task based activities using the participant's current performance and success rate. We have developed a second generation system that can exercise the hand and the arm together or in isolation and provide for both unilateral and bilateral hand and arm activities in three-dimensional space. We demonstrate that by providing haptic assistance for the hand and arm and adaptive anti-gravity support, the system can accommodate patients with lower level impairments. We hypothesize that combining training in virtual environments (VE) with observation of motor actions can bring additional benefits. We present a proof of concept of a novel system that integrates interactive VE with functional neuroimaging to address this issue. Three components of this system are synchronized, the presentation of the visual display of the virtual hands, the collection of fMRI images and the collection of hand joint angles from the instrumented gloves. We show that interactive VEs can facilitate activation of brain areas during training by providing appropriately modified visual feedback. We predict that visual augmentation can become a tool to facilitate functional neuroplasticity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">19592790</PMID>
<DateCreated>
<Year>2009</Year>
<Month>07</Month>
<Day>13</Day>
</DateCreated>
<DateCompleted>
<Year>2009</Year>
<Month>09</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>09</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0926-9630</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>145</Volume>
<PubDate>
<Year>2009</Year>
</PubDate>
</JournalIssue>
<Title>Studies in health technology and informatics</Title>
<ISOAbbreviation>Stud Health Technol Inform</ISOAbbreviation>
</Journal>
<ArticleTitle>Virtual reality to maximize function for hand and arm rehabilitation: exploration of neural mechanisms.</ArticleTitle>
<Pagination>
<MedlinePgn>109-25</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Stroke patients report hand function as the most disabling motor deficit. Current evidence shows that learning new motor skills is essential for inducing functional neuroplasticity and functional recovery. Adaptive training paradigms that continually and interactively move a motor outcome closer to the targeted skill are important to motor recovery. Computerized virtual reality simulations when interfaced with robots, movement tracking and sensing glove systems, are particularly adaptable, allowing for online and offline modifications of task based activities using the participant's current performance and success rate. We have developed a second generation system that can exercise the hand and the arm together or in isolation and provide for both unilateral and bilateral hand and arm activities in three-dimensional space. We demonstrate that by providing haptic assistance for the hand and arm and adaptive anti-gravity support, the system can accommodate patients with lower level impairments. We hypothesize that combining training in virtual environments (VE) with observation of motor actions can bring additional benefits. We present a proof of concept of a novel system that integrates interactive VE with functional neuroimaging to address this issue. Three components of this system are synchronized, the presentation of the visual display of the virtual hands, the collection of fMRI images and the collection of hand joint angles from the instrumented gloves. We show that interactive VEs can facilitate activation of brain areas during training by providing appropriately modified visual feedback. We predict that visual augmentation can become a tool to facilitate functional neuroplasticity.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Merians</LastName>
<ForeName>Alma S</ForeName>
<Initials>AS</Initials>
<AffiliationInfo>
<Affiliation>Doctoral Programs in Physical Therapy, Department of Rehabilitation and Movement Science, University of Medicine and Dentistry of New Jersey, Newark, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tunik</LastName>
<ForeName>Eugene</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Adamovich</LastName>
<ForeName>Sergei V</ForeName>
<Initials>SV</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 HD058301</GrantID>
<Acronym>HD</Acronym>
<Agency>NICHD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Stud Health Technol Inform</MedlineTA>
<NlmUniqueID>9214582</NlmUniqueID>
<ISSNLinking>0926-9630</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>T</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001132">Arm</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000503">physiopathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D002547">Cerebral Palsy</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000534">rehabilitation</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D003198">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006225">Hand</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000503">physiopathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D011597">Psychomotor Performance</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D012371">Robotics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D020521">Stroke</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000503">physiopathology</QualifierName>
<QualifierName MajorTopicYN="Y" UI="Q000534">rehabilitation</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D014584">User-Computer Interface</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">NIHMS718318</OtherID>
<OtherID Source="NLM">PMC4554695</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>7</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>7</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>9</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19592790</ArticleId>
<ArticleId IdType="pmc">PMC4554695</ArticleId>
<ArticleId IdType="mid">NIHMS718318</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001251 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001251 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:19592790
   |texte=   Virtual reality to maximize function for hand and arm rehabilitation: exploration of neural mechanisms.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:19592790" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024