Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Leveraging knowledge from physiological data: on-body heat stress risk prediction with sensor networks.

Identifieur interne : 000761 ( PubMed/Corpus ); précédent : 000760; suivant : 000762

Leveraging knowledge from physiological data: on-body heat stress risk prediction with sensor networks.

Auteurs : Elena Gaura ; John Kemp ; James Brusey

Source :

RBID : pubmed:24473550

English descriptors

Abstract

The paper demonstrates that wearable sensor systems, coupled with real-time on-body processing and actuation, can enhance safety for wearers of heavy protective equipment who are subjected to harsh thermal environments by reducing risk of Uncompensable Heat Stress (UHS). The work focuses on Explosive Ordnance Disposal operatives and shows that predictions of UHS risk can be performed in real-time with sufficient accuracy for real-world use. Furthermore, it is shown that the required sensory input for such algorithms can be obtained with wearable, non-intrusive sensors. Two algorithms, one based on Bayesian nets and another on decision trees, are presented for determining the heat stress risk, considering the mean skin temperature prediction as a proxy. The algorithms are trained on empirical data and have accuracies of 92.1±2.9% and 94.4±2.1%, respectively when tested using leave-one-subject-out cross-validation. In applications such as Explosive Ordnance Disposal operative monitoring, such prediction algorithms can enable autonomous actuation of cooling systems and haptic alerts to minimize casualties.

DOI: 10.1109/TBCAS.2013.2254485
PubMed: 24473550

Links to Exploration step

pubmed:24473550

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Leveraging knowledge from physiological data: on-body heat stress risk prediction with sensor networks.</title>
<author>
<name sortKey="Gaura, Elena" sort="Gaura, Elena" uniqKey="Gaura E" first="Elena" last="Gaura">Elena Gaura</name>
</author>
<author>
<name sortKey="Kemp, John" sort="Kemp, John" uniqKey="Kemp J" first="John" last="Kemp">John Kemp</name>
</author>
<author>
<name sortKey="Brusey, James" sort="Brusey, James" uniqKey="Brusey J" first="James" last="Brusey">James Brusey</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="doi">10.1109/TBCAS.2013.2254485</idno>
<idno type="RBID">pubmed:24473550</idno>
<idno type="pmid">24473550</idno>
<idno type="wicri:Area/PubMed/Corpus">000761</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Leveraging knowledge from physiological data: on-body heat stress risk prediction with sensor networks.</title>
<author>
<name sortKey="Gaura, Elena" sort="Gaura, Elena" uniqKey="Gaura E" first="Elena" last="Gaura">Elena Gaura</name>
</author>
<author>
<name sortKey="Kemp, John" sort="Kemp, John" uniqKey="Kemp J" first="John" last="Kemp">John Kemp</name>
</author>
<author>
<name sortKey="Brusey, James" sort="Brusey, James" uniqKey="Brusey J" first="James" last="Brusey">James Brusey</name>
</author>
</analytic>
<series>
<title level="j">IEEE transactions on biomedical circuits and systems</title>
<idno type="eISSN">1940-9990</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Accelerometry</term>
<term>Adolescent</term>
<term>Adult</term>
<term>Algorithms</term>
<term>Clothing</term>
<term>Decision Support Systems, Clinical (instrumentation)</term>
<term>Equipment Design</term>
<term>Firefighters</term>
<term>Heat Stress Disorders (diagnosis)</term>
<term>Heat Stress Disorders (prevention & control)</term>
<term>Humans</term>
<term>Male</term>
<term>Models, Statistical</term>
<term>Remote Sensing Technology (instrumentation)</term>
<term>Remote Sensing Technology (methods)</term>
<term>Reproducibility of Results</term>
<term>Skin Temperature (physiology)</term>
<term>Young Adult</term>
</keywords>
<keywords scheme="MESH" qualifier="diagnosis" xml:lang="en">
<term>Heat Stress Disorders</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="en">
<term>Decision Support Systems, Clinical</term>
<term>Remote Sensing Technology</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Remote Sensing Technology</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Skin Temperature</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Heat Stress Disorders</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Accelerometry</term>
<term>Adolescent</term>
<term>Adult</term>
<term>Algorithms</term>
<term>Clothing</term>
<term>Equipment Design</term>
<term>Firefighters</term>
<term>Humans</term>
<term>Male</term>
<term>Models, Statistical</term>
<term>Reproducibility of Results</term>
<term>Young Adult</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The paper demonstrates that wearable sensor systems, coupled with real-time on-body processing and actuation, can enhance safety for wearers of heavy protective equipment who are subjected to harsh thermal environments by reducing risk of Uncompensable Heat Stress (UHS). The work focuses on Explosive Ordnance Disposal operatives and shows that predictions of UHS risk can be performed in real-time with sufficient accuracy for real-world use. Furthermore, it is shown that the required sensory input for such algorithms can be obtained with wearable, non-intrusive sensors. Two algorithms, one based on Bayesian nets and another on decision trees, are presented for determining the heat stress risk, considering the mean skin temperature prediction as a proxy. The algorithms are trained on empirical data and have accuracies of 92.1±2.9% and 94.4±2.1%, respectively when tested using leave-one-subject-out cross-validation. In applications such as Explosive Ordnance Disposal operative monitoring, such prediction algorithms can enable autonomous actuation of cooling systems and haptic alerts to minimize casualties.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">24473550</PMID>
<DateCreated>
<Year>2014</Year>
<Month>01</Month>
<Day>29</Day>
</DateCreated>
<DateCompleted>
<Year>2014</Year>
<Month>09</Month>
<Day>08</Day>
</DateCompleted>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1940-9990</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2013</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>IEEE transactions on biomedical circuits and systems</Title>
<ISOAbbreviation>IEEE Trans Biomed Circuits Syst</ISOAbbreviation>
</Journal>
<ArticleTitle>Leveraging knowledge from physiological data: on-body heat stress risk prediction with sensor networks.</ArticleTitle>
<Pagination>
<MedlinePgn>861-70</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1109/TBCAS.2013.2254485</ELocationID>
<Abstract>
<AbstractText>The paper demonstrates that wearable sensor systems, coupled with real-time on-body processing and actuation, can enhance safety for wearers of heavy protective equipment who are subjected to harsh thermal environments by reducing risk of Uncompensable Heat Stress (UHS). The work focuses on Explosive Ordnance Disposal operatives and shows that predictions of UHS risk can be performed in real-time with sufficient accuracy for real-world use. Furthermore, it is shown that the required sensory input for such algorithms can be obtained with wearable, non-intrusive sensors. Two algorithms, one based on Bayesian nets and another on decision trees, are presented for determining the heat stress risk, considering the mean skin temperature prediction as a proxy. The algorithms are trained on empirical data and have accuracies of 92.1±2.9% and 94.4±2.1%, respectively when tested using leave-one-subject-out cross-validation. In applications such as Explosive Ordnance Disposal operative monitoring, such prediction algorithms can enable autonomous actuation of cooling systems and haptic alerts to minimize casualties.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gaura</LastName>
<ForeName>Elena</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kemp</LastName>
<ForeName>John</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Brusey</LastName>
<ForeName>James</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>IEEE Trans Biomed Circuits Syst</MedlineTA>
<NlmUniqueID>101312520</NlmUniqueID>
<ISSNLinking>1932-4545</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D061725">Accelerometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000293">Adolescent</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000328">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000465">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003020">Clothing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D020000">Decision Support Systems, Clinical</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000295">instrumentation</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004867">Equipment Design</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D061388">Firefighters</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D018882">Heat Stress Disorders</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000175">diagnosis</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000517">prevention & control</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008297">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D015233">Models, Statistical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D058998">Remote Sensing Technology</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000295">instrumentation</QualifierName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D015203">Reproducibility of Results</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D012881">Skin Temperature</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D055815">Young Adult</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>1</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>1</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>9</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1109/TBCAS.2013.2254485</ArticleId>
<ArticleId IdType="pubmed">24473550</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000761 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000761 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24473550
   |texte=   Leveraging knowledge from physiological data: on-body heat stress risk prediction with sensor networks.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:24473550" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024