Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Human perceptual overestimation of whole body roll tilt in hypergravity.

Identifieur interne : 000458 ( PubMed/Corpus ); précédent : 000457; suivant : 000459

Human perceptual overestimation of whole body roll tilt in hypergravity.

Auteurs : Torin K. Clark ; Michael C. Newman ; Charles M. Oman ; Daniel M. Merfeld ; Laurence R. Young

Source :

RBID : pubmed:25540216

English descriptors

Abstract

Hypergravity provides a unique environment to study human perception of orientation. We utilized a long-radius centrifuge to study perception of both static and dynamic whole body roll tilt in hypergravity, across a range of angles, frequencies, and net gravito-inertial levels (referred to as G levels). While studies of static tilt perception in hypergravity have been published, this is the first to measure dynamic tilt perception (i.e., with time-varying canal stimulation) in hypergravity using a continuous matching task. In complete darkness, subjects reported their orientation perception using a haptic task, whereby they attempted to align a hand-held bar with their perceived horizontal. Static roll tilt was overestimated in hypergravity, with more overestimation at larger angles and higher G levels, across the conditions tested (overestimated by ∼35% per additional G level, P < 0.001). As our primary contribution, we show that dynamic roll tilt was also consistently overestimated in hypergravity (P < 0.001) at all angles and frequencies tested, again with more overestimation at higher G levels. The overestimation was similar to that for static tilts at low angular velocities but decreased at higher angular velocities (P = 0.006), consistent with semicircular canal sensory integration. To match our findings, we propose a modification to a previous Observer-type canal-otolith interaction model. Specifically, our data were better modeled by including the hypothesis that the central nervous system treats otolith stimulation in the utricular plane differently than stimulation out of the utricular plane. This modified model was able to simulate quantitatively both the static and the dynamic roll tilt overestimation in hypergravity measured experimentally.

DOI: 10.1152/jn.00095.2014
PubMed: 25540216

Links to Exploration step

pubmed:25540216

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Human perceptual overestimation of whole body roll tilt in hypergravity.</title>
<author>
<name sortKey="Clark, Torin K" sort="Clark, Torin K" uniqKey="Clark T" first="Torin K" last="Clark">Torin K. Clark</name>
<affiliation>
<nlm:affiliation>Man Vehicle Laboratory, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts; Charles Stark Draper Laboratory, Incorporated, Cambridge, Massachusetts; tkc@mit.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Newman, Michael C" sort="Newman, Michael C" uniqKey="Newman M" first="Michael C" last="Newman">Michael C. Newman</name>
<affiliation>
<nlm:affiliation>National Aerospace Training and Research Center, Southampton, Pennsylvania; and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Oman, Charles M" sort="Oman, Charles M" uniqKey="Oman C" first="Charles M" last="Oman">Charles M. Oman</name>
<affiliation>
<nlm:affiliation>Man Vehicle Laboratory, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts;</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Merfeld, Daniel M" sort="Merfeld, Daniel M" uniqKey="Merfeld D" first="Daniel M" last="Merfeld">Daniel M. Merfeld</name>
<affiliation>
<nlm:affiliation>Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Young, Laurence R" sort="Young, Laurence R" uniqKey="Young L" first="Laurence R" last="Young">Laurence R. Young</name>
<affiliation>
<nlm:affiliation>Man Vehicle Laboratory, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts;</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25540216</idno>
<idno type="pmid">25540216</idno>
<idno type="doi">10.1152/jn.00095.2014</idno>
<idno type="wicri:Area/PubMed/Corpus">000458</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Human perceptual overestimation of whole body roll tilt in hypergravity.</title>
<author>
<name sortKey="Clark, Torin K" sort="Clark, Torin K" uniqKey="Clark T" first="Torin K" last="Clark">Torin K. Clark</name>
<affiliation>
<nlm:affiliation>Man Vehicle Laboratory, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts; Charles Stark Draper Laboratory, Incorporated, Cambridge, Massachusetts; tkc@mit.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Newman, Michael C" sort="Newman, Michael C" uniqKey="Newman M" first="Michael C" last="Newman">Michael C. Newman</name>
<affiliation>
<nlm:affiliation>National Aerospace Training and Research Center, Southampton, Pennsylvania; and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Oman, Charles M" sort="Oman, Charles M" uniqKey="Oman C" first="Charles M" last="Oman">Charles M. Oman</name>
<affiliation>
<nlm:affiliation>Man Vehicle Laboratory, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts;</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Merfeld, Daniel M" sort="Merfeld, Daniel M" uniqKey="Merfeld D" first="Daniel M" last="Merfeld">Daniel M. Merfeld</name>
<affiliation>
<nlm:affiliation>Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Young, Laurence R" sort="Young, Laurence R" uniqKey="Young L" first="Laurence R" last="Young">Laurence R. Young</name>
<affiliation>
<nlm:affiliation>Man Vehicle Laboratory, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts;</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of neurophysiology</title>
<idno type="eISSN">1522-1598</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult</term>
<term>Female</term>
<term>Gravity Sensing (physiology)</term>
<term>Humans</term>
<term>Hypergravity</term>
<term>Male</term>
<term>Motion Perception (physiology)</term>
<term>Orientation (physiology)</term>
<term>Semicircular Canals (physiology)</term>
<term>Space Perception (physiology)</term>
<term>Young Adult</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Gravity Sensing</term>
<term>Motion Perception</term>
<term>Orientation</term>
<term>Semicircular Canals</term>
<term>Space Perception</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Female</term>
<term>Humans</term>
<term>Hypergravity</term>
<term>Male</term>
<term>Young Adult</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Hypergravity provides a unique environment to study human perception of orientation. We utilized a long-radius centrifuge to study perception of both static and dynamic whole body roll tilt in hypergravity, across a range of angles, frequencies, and net gravito-inertial levels (referred to as G levels). While studies of static tilt perception in hypergravity have been published, this is the first to measure dynamic tilt perception (i.e., with time-varying canal stimulation) in hypergravity using a continuous matching task. In complete darkness, subjects reported their orientation perception using a haptic task, whereby they attempted to align a hand-held bar with their perceived horizontal. Static roll tilt was overestimated in hypergravity, with more overestimation at larger angles and higher G levels, across the conditions tested (overestimated by ∼35% per additional G level, P < 0.001). As our primary contribution, we show that dynamic roll tilt was also consistently overestimated in hypergravity (P < 0.001) at all angles and frequencies tested, again with more overestimation at higher G levels. The overestimation was similar to that for static tilts at low angular velocities but decreased at higher angular velocities (P = 0.006), consistent with semicircular canal sensory integration. To match our findings, we propose a modification to a previous Observer-type canal-otolith interaction model. Specifically, our data were better modeled by including the hypothesis that the central nervous system treats otolith stimulation in the utricular plane differently than stimulation out of the utricular plane. This modified model was able to simulate quantitatively both the static and the dynamic roll tilt overestimation in hypergravity measured experimentally.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">25540216</PMID>
<DateCreated>
<Year>2015</Year>
<Month>04</Month>
<Day>04</Day>
</DateCreated>
<DateCompleted>
<Year>2016</Year>
<Month>01</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>04</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1522-1598</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>113</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2015</Year>
<Month>Apr</Month>
<Day>1</Day>
</PubDate>
</JournalIssue>
<Title>Journal of neurophysiology</Title>
<ISOAbbreviation>J. Neurophysiol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Human perceptual overestimation of whole body roll tilt in hypergravity.</ArticleTitle>
<Pagination>
<MedlinePgn>2062-77</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1152/jn.00095.2014</ELocationID>
<Abstract>
<AbstractText>Hypergravity provides a unique environment to study human perception of orientation. We utilized a long-radius centrifuge to study perception of both static and dynamic whole body roll tilt in hypergravity, across a range of angles, frequencies, and net gravito-inertial levels (referred to as G levels). While studies of static tilt perception in hypergravity have been published, this is the first to measure dynamic tilt perception (i.e., with time-varying canal stimulation) in hypergravity using a continuous matching task. In complete darkness, subjects reported their orientation perception using a haptic task, whereby they attempted to align a hand-held bar with their perceived horizontal. Static roll tilt was overestimated in hypergravity, with more overestimation at larger angles and higher G levels, across the conditions tested (overestimated by ∼35% per additional G level, P < 0.001). As our primary contribution, we show that dynamic roll tilt was also consistently overestimated in hypergravity (P < 0.001) at all angles and frequencies tested, again with more overestimation at higher G levels. The overestimation was similar to that for static tilts at low angular velocities but decreased at higher angular velocities (P = 0.006), consistent with semicircular canal sensory integration. To match our findings, we propose a modification to a previous Observer-type canal-otolith interaction model. Specifically, our data were better modeled by including the hypothesis that the central nervous system treats otolith stimulation in the utricular plane differently than stimulation out of the utricular plane. This modified model was able to simulate quantitatively both the static and the dynamic roll tilt overestimation in hypergravity measured experimentally.</AbstractText>
<CopyrightInformation>Copyright © 2015 the American Physiological Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Clark</LastName>
<ForeName>Torin K</ForeName>
<Initials>TK</Initials>
<AffiliationInfo>
<Affiliation>Man Vehicle Laboratory, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts; Charles Stark Draper Laboratory, Incorporated, Cambridge, Massachusetts; tkc@mit.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Newman</LastName>
<ForeName>Michael C</ForeName>
<Initials>MC</Initials>
<AffiliationInfo>
<Affiliation>National Aerospace Training and Research Center, Southampton, Pennsylvania; and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Oman</LastName>
<ForeName>Charles M</ForeName>
<Initials>CM</Initials>
<AffiliationInfo>
<Affiliation>Man Vehicle Laboratory, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts;</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Merfeld</LastName>
<ForeName>Daniel M</ForeName>
<Initials>DM</Initials>
<AffiliationInfo>
<Affiliation>Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Young</LastName>
<ForeName>Laurence R</ForeName>
<Initials>LR</Initials>
<AffiliationInfo>
<Affiliation>Man Vehicle Laboratory, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts;</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01-DC-04158</GrantID>
<Acronym>DC</Acronym>
<Agency>NIDCD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>12</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Neurophysiol</MedlineTA>
<NlmUniqueID>0375404</NlmUniqueID>
<ISSNLinking>0022-3077</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Psychol. 1964 Sep;77:451-6</RefSource>
<PMID Version="1">14198668</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Aerosp Med. 1964 Aug;35:764-72</RefSource>
<PMID Version="1">14215796</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Aeromed Acta. 1963-1964;9:45-91</RefSource>
<PMID Version="1">14284242</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Otolaryngol. 1962 Jun;54:479-501</RefSource>
<PMID Version="1">14473991</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Aviat Space Environ Med. 1991 Mar;62(3):252-3</RefSource>
<PMID Version="1">2012573</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann N Y Acad Sci. 1992 May 22;656:847-9</RefSource>
<PMID Version="1">1599198</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vestib Res. 1993 Summer;3(2):141-61</RefSource>
<PMID Version="1">8275250</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vestib Res. 1995 Jan-Feb;5(1):1-17</RefSource>
<PMID Version="1">7711943</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscience. 1996 Jan;70(2):487-513</RefSource>
<PMID Version="1">8848155</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Vision Res. 1997 Apr;37(8):1071-8</RefSource>
<PMID Version="1">9196725</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Astronaut. 1992 Jul;27:1-9</RefSource>
<PMID Version="1">11537572</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Vision Res. 1998 Jun;38(13):1989-99</RefSource>
<PMID Version="1">9797945</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Percept Psychophys. 1998 Nov;60(8):1415-25</RefSource>
<PMID Version="1">9865081</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arch Neurol. 1960 Jul;3:55-73</RefSource>
<PMID Version="1">13829134</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Motor Control. 2005 Jan;9(1):40-58</RefSource>
<PMID Version="1">15784949</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2005 Jul;94(1):186-98</RefSource>
<PMID Version="1">15728767</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2005 Jul;94(1):199-205</RefSource>
<PMID Version="1">15730979</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Aviat Space Environ Med. 2005 Oct;76(10):940-6</RefSource>
<PMID Version="1">16235877</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Neurobiol. 2005 Dec;15(6):653-9</RefSource>
<PMID Version="1">16271464</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2006 Mar;95(3):1936-48</RefSource>
<PMID Version="1">16319209</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Aviat Space Environ Med. 2006 May;77(5):500-8</RefSource>
<PMID Version="1">16708530</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2006 Jul;96(1):486-91</RefSource>
<PMID Version="1">16571732</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Aviat Space Environ Med. 2006 Jul;77(7):695-703</RefSource>
<PMID Version="1">16856353</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2006 Aug;173(3):374-88</RefSource>
<PMID Version="1">16628400</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2006 Aug;173(3):364-73</RefSource>
<PMID Version="1">16628401</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2006 Sep;173(4):612-22</RefSource>
<PMID Version="1">16550392</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biol Cybern. 2007 Apr;96(4):389-404</RefSource>
<PMID Version="1">17146661</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2007 Apr;97(4):2958-64</RefSource>
<PMID Version="1">17287442</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2007 May;97(5):3256-68</RefSource>
<PMID Version="1">17329621</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2008 May;99(5):2264-80</RefSource>
<PMID Version="1">18337369</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vestib Res. 2007;17(4):171-81</RefSource>
<PMID Version="1">18525143</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Vision Res. 2008 Jun;48(13):1488-96</RefSource>
<PMID Version="1">18466947</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2008 Sep;190(2):165-77</RefSource>
<PMID Version="1">18566806</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vestib Res. 2008;18(1):25-37</RefSource>
<PMID Version="1">18776596</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 2008 Nov 25;1242:231-43</RefSource>
<PMID Version="1">18706895</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2008 Dec;100(6):2981-96</RefSource>
<PMID Version="1">18842952</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2009 Mar;101(3):1321-33</RefSource>
<PMID Version="1">19118112</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vis. 2009;9(2):9.1-15</RefSource>
<PMID Version="1">19271919</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2009 Apr;194(4):647-60</RefSource>
<PMID Version="1">19305984</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2009 Oct;102(4):2232-44</RefSource>
<PMID Version="1">19625542</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Neurosci. 2010;11:83</RefSource>
<PMID Version="1">20630097</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2011 Apr;210(2):173-84</RefSource>
<PMID Version="1">21424258</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vestib Res. 2011;21(4):193-208</RefSource>
<PMID Version="1">21846952</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Aviat Space Environ Med. 2012 May;83(5):496-503</RefSource>
<PMID Version="1">22606866</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2012 Jul;108(2):390-405</RefSource>
<PMID Version="1">22514288</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vestib Res. 2012 Jan 1;22(2):69-80</RefSource>
<PMID Version="1">23000607</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2012 Sep 26;32(39):13537-42</RefSource>
<PMID Version="1">23015443</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vis. 2013;13(2):3</RefSource>
<PMID Version="1">23378132</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2013 Apr 1;591(7):1907-20</RefSource>
<PMID Version="1">23318876</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Multisens Res. 2013;26(4):387-403</RefSource>
<PMID Version="1">24319930</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2000 Jul;84(1):11-27</RefSource>
<PMID Version="1">10899179</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2000 Sep;134(1):96-106</RefSource>
<PMID Version="1">11026731</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2000 Oct;84(4):2001-15</RefSource>
<PMID Version="1">11024093</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Otolaryngol. 2000 Sep;120(6):735-8</RefSource>
<PMID Version="1">11099150</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2001 Apr;85(4):1648-60</RefSource>
<PMID Version="1">11287488</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Perception. 2001;30(6):733-41</RefSource>
<PMID Version="1">11464561</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 2001 Sep;204(Pt 18):3217-24</RefSource>
<PMID Version="1">11581337</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Astronaut. 2001 Aug-Nov;49(3-10):215-26</RefSource>
<PMID Version="1">11669111</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2002 Feb;87(2):819-33</RefSource>
<PMID Version="1">11826049</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Aviat Space Environ Med. 2002 Mar;73(3):191-3</RefSource>
<PMID Version="1">11908883</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biol Cybern. 2002 Mar;86(3):209-30</RefSource>
<PMID Version="1">12068787</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2003 Jan;89(1):390-400</RefSource>
<PMID Version="1">12522188</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vestib Res. 2002-2003;12(5-6):271-82</RefSource>
<PMID Version="1">14501103</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2003 Nov;90(5):2973-7</RefSource>
<PMID Version="1">12878718</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vestib Res. 2003;13(2-3):65-77</RefSource>
<PMID Version="1">14757910</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Aviat Space Environ Med. 2004 Feb;75(2):172-4</RefSource>
<PMID Version="1">14960055</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vestib Res. 2003;13(4-6):321-30</RefSource>
<PMID Version="1">15096675</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2004 Aug;92(2):905-25</RefSource>
<PMID Version="1">15056677</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Psychol. 1966 Mar;71(3):452-60</RefSource>
<PMID Version="1">5908830</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Otolaryngol. 1968;:Suppl 230:1-20</RefSource>
<PMID Version="1">5650275</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Naturwissenschaften. 1967 Jun;54(11):288</RefSource>
<PMID Version="1">5589926</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Naturwissenschaften. 1967 Jun;54(11):288-9</RefSource>
<PMID Version="1">5589927</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Aerosp Med. 1970 May;41(5):483-90</RefSource>
<PMID Version="1">5430674</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1971 Jul;34(4):635-60</RefSource>
<PMID Version="1">5000362</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Appl Physiol. 1971 Nov;31(5):697-700</RefSource>
<PMID Version="1">5117183</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Aerosp Med. 1973 Jan;44(1):90-1</RefSource>
<PMID Version="1">4689496</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Aviat Space Environ Med. 1976 Feb;47(2):159-64</RefSource>
<PMID Version="1">1082746</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1976 Sep;39(5):970-84</RefSource>
<PMID Version="1">824412</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1976 Sep;39(5):985-95</RefSource>
<PMID Version="1">824413</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1976 Sep;39(5):996-1008</RefSource>
<PMID Version="1">824414</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychol Bull. 1976 Sep;83(5):783-816</RefSource>
<PMID Version="1">794899</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Aviat Space Environ Med. 1978 Nov;49(11):1275-80</RefSource>
<PMID Version="1">718569</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J R Soc Med. 1978 Nov;71(11):819-29</RefSource>
<PMID Version="1">731645</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1980 Aug 8;209(4457):706-8</RefSource>
<PMID Version="1">7394530</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Otolaryngol Suppl. 1982;392:1-44</RefSource>
<PMID Version="1">6303041</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Naturwissenschaften. 1983 Jun;70(6):272-81</RefSource>
<PMID Version="1">6877388</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1986;64(2):316-34</RefSource>
<PMID Version="1">3803476</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Psychol (Amst). 1986 Dec;63(1-3):63-85</RefSource>
<PMID Version="1">3591446</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Adv Otorhinolaryngol. 1988;42:24-30</RefSource>
<PMID Version="1">3265015</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biol Cybern. 1989;60(3):185-94</RefSource>
<PMID Version="1">2923923</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann N Y Acad Sci. 1988;545:51-73</RefSource>
<PMID Version="1">3071213</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biol Cybern. 1989;61(6):405-16</RefSource>
<PMID Version="1">2790069</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Can J Physiol Pharmacol. 1990 Feb;68(2):294-303</RefSource>
<PMID Version="1">2178753</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1999 Jan 1;19(1):316-27</RefSource>
<PMID Version="1">9870961</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res Bull. 1998 Nov 15;47(5):507-16</RefSource>
<PMID Version="1">10052582</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1999 Apr 15;398(6728):615-8</RefSource>
<PMID Version="1">10217143</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann N Y Acad Sci. 1999 May 28;871:27-34</RefSource>
<PMID Version="1">10372061</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Otolaryngol. 1958 Jan-Feb;49(1):4-16</RefSource>
<PMID Version="1">13508213</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000328">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005260">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D018466">Gravity Sensing</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D018471">Hypergravity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008297">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009039">Motion Perception</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009949">Orientation</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D012665">Semicircular Canals</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013028">Space Perception</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D055815">Young Adult</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC4416546</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">human</Keyword>
<Keyword MajorTopicYN="N">hypergravity</Keyword>
<Keyword MajorTopicYN="N">orientation perception</Keyword>
<Keyword MajorTopicYN="N">roll tilt</Keyword>
<Keyword MajorTopicYN="N">vestibular</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>1</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>12</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2014</Year>
<Month>12</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>12</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>12</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>1</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25540216</ArticleId>
<ArticleId IdType="pii">jn.00095.2014</ArticleId>
<ArticleId IdType="doi">10.1152/jn.00095.2014</ArticleId>
<ArticleId IdType="pmc">PMC4416546</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000458 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000458 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25540216
   |texte=   Human perceptual overestimation of whole body roll tilt in hypergravity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:25540216" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024