Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Differential roles of delay-period neural activity in the monkey dorsolateral prefrontal cortex in visual-haptic crossmodal working memory.

Identifieur interne : 000457 ( PubMed/Corpus ); précédent : 000456; suivant : 000458

Differential roles of delay-period neural activity in the monkey dorsolateral prefrontal cortex in visual-haptic crossmodal working memory.

Auteurs : Liping Wang ; Xianchun Li ; Steven S. Hsiao ; Fred A. Lenz ; Mark Bodner ; Yong-Di Zhou ; Joaquín M. Fuster

Source :

RBID : pubmed:25540412

English descriptors

Abstract

Previous studies have shown that neurons of monkey dorsolateral prefrontal cortex (DLPFC) integrate information across modalities and maintain it throughout the delay period of working-memory (WM) tasks. However, the mechanisms of this temporal integration in the DLPFC are still poorly understood. In the present study, to further elucidate the role of the DLPFC in crossmodal WM, we trained monkeys to perform visuo-haptic (VH) crossmodal and haptic-haptic (HH) unimodal WM tasks. The neuronal activity recorded in the DLPFC in the delay period of both tasks indicates that the early-delay differential activity probably is related to the encoding of sample information with different strengths depending on task modality, that the late-delay differential activity reflects the associated (modality-independent) action component of haptic choice in both tasks (that is, the anticipation of the behavioral choice and/or active recall and maintenance of sample information for subsequent action), and that the sustained whole-delay differential activity likely bridges and integrates the sensory and action components. In addition, the VH late-delay differential activity was significantly diminished when the haptic choice was not required. Taken together, the results show that, in addition to the whole-delay differential activity, DLPFC neurons also show early- and late-delay differential activities. These previously unidentified findings indicate that DLPFC is capable of (i) holding the coded sample information (e.g., visual or tactile information) in the early-delay activity, (ii) retrieving the abstract information (orientations) of the sample (whether the sample has been haptic or visual) and holding it in the late-delay activity, and (iii) preparing for behavioral choice acting on that abstract information.

DOI: 10.1073/pnas.1410130112
PubMed: 25540412

Links to Exploration step

pubmed:25540412

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Differential roles of delay-period neural activity in the monkey dorsolateral prefrontal cortex in visual-haptic crossmodal working memory.</title>
<author>
<name sortKey="Wang, Liping" sort="Wang, Liping" uniqKey="Wang L" first="Liping" last="Wang">Liping Wang</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Brain Functional Genomics (Ministry of Education & Science and Technology Commission of Shanghai Municipality), Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai 200062, China;</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Xianchun" sort="Li, Xianchun" uniqKey="Li X" first="Xianchun" last="Li">Xianchun Li</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Brain Functional Genomics (Ministry of Education & Science and Technology Commission of Shanghai Municipality), Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China;</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hsiao, Steven S" sort="Hsiao, Steven S" uniqKey="Hsiao S" first="Steven S" last="Hsiao">Steven S. Hsiao</name>
<affiliation>
<nlm:affiliation>Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218; Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205;</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lenz, Fred A" sort="Lenz, Fred A" uniqKey="Lenz F" first="Fred A" last="Lenz">Fred A. Lenz</name>
<affiliation>
<nlm:affiliation>Department of Neurosurgery, Johns Hopkins University, Baltimore, MD 21287;</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bodner, Mark" sort="Bodner, Mark" uniqKey="Bodner M" first="Mark" last="Bodner">Mark Bodner</name>
<affiliation>
<nlm:affiliation>MIND Research Institute, Irvine, CA 92617; and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Yong Di" sort="Zhou, Yong Di" uniqKey="Zhou Y" first="Yong-Di" last="Zhou">Yong-Di Zhou</name>
<affiliation>
<nlm:affiliation>Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218; Department of Neurosurgery, Johns Hopkins University, Baltimore, MD 21287; yzhou12@jhmi.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fuster, Joaquin M" sort="Fuster, Joaquin M" uniqKey="Fuster J" first="Joaquín M" last="Fuster">Joaquín M. Fuster</name>
<affiliation>
<nlm:affiliation>Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90024.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25540412</idno>
<idno type="pmid">25540412</idno>
<idno type="doi">10.1073/pnas.1410130112</idno>
<idno type="wicri:Area/PubMed/Corpus">000457</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Differential roles of delay-period neural activity in the monkey dorsolateral prefrontal cortex in visual-haptic crossmodal working memory.</title>
<author>
<name sortKey="Wang, Liping" sort="Wang, Liping" uniqKey="Wang L" first="Liping" last="Wang">Liping Wang</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Brain Functional Genomics (Ministry of Education & Science and Technology Commission of Shanghai Municipality), Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai 200062, China;</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Xianchun" sort="Li, Xianchun" uniqKey="Li X" first="Xianchun" last="Li">Xianchun Li</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Brain Functional Genomics (Ministry of Education & Science and Technology Commission of Shanghai Municipality), Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China;</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hsiao, Steven S" sort="Hsiao, Steven S" uniqKey="Hsiao S" first="Steven S" last="Hsiao">Steven S. Hsiao</name>
<affiliation>
<nlm:affiliation>Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218; Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205;</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lenz, Fred A" sort="Lenz, Fred A" uniqKey="Lenz F" first="Fred A" last="Lenz">Fred A. Lenz</name>
<affiliation>
<nlm:affiliation>Department of Neurosurgery, Johns Hopkins University, Baltimore, MD 21287;</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bodner, Mark" sort="Bodner, Mark" uniqKey="Bodner M" first="Mark" last="Bodner">Mark Bodner</name>
<affiliation>
<nlm:affiliation>MIND Research Institute, Irvine, CA 92617; and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Yong Di" sort="Zhou, Yong Di" uniqKey="Zhou Y" first="Yong-Di" last="Zhou">Yong-Di Zhou</name>
<affiliation>
<nlm:affiliation>Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218; Department of Neurosurgery, Johns Hopkins University, Baltimore, MD 21287; yzhou12@jhmi.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fuster, Joaquin M" sort="Fuster, Joaquin M" uniqKey="Fuster J" first="Joaquín M" last="Fuster">Joaquín M. Fuster</name>
<affiliation>
<nlm:affiliation>Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90024.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Eye Movements (physiology)</term>
<term>Female</term>
<term>Macaca mulatta (physiology)</term>
<term>Macaca mulatta (psychology)</term>
<term>Male</term>
<term>Memory, Short-Term (physiology)</term>
<term>Neurons (physiology)</term>
<term>Photic Stimulation</term>
<term>Physical Stimulation</term>
<term>Prefrontal Cortex (physiology)</term>
<term>Task Performance and Analysis</term>
<term>Time Factors</term>
<term>Touch Perception (physiology)</term>
<term>Visual Perception (physiology)</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Eye Movements</term>
<term>Macaca mulatta</term>
<term>Memory, Short-Term</term>
<term>Neurons</term>
<term>Prefrontal Cortex</term>
<term>Touch Perception</term>
<term>Visual Perception</term>
</keywords>
<keywords scheme="MESH" qualifier="psychology" xml:lang="en">
<term>Macaca mulatta</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Female</term>
<term>Male</term>
<term>Photic Stimulation</term>
<term>Physical Stimulation</term>
<term>Task Performance and Analysis</term>
<term>Time Factors</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Previous studies have shown that neurons of monkey dorsolateral prefrontal cortex (DLPFC) integrate information across modalities and maintain it throughout the delay period of working-memory (WM) tasks. However, the mechanisms of this temporal integration in the DLPFC are still poorly understood. In the present study, to further elucidate the role of the DLPFC in crossmodal WM, we trained monkeys to perform visuo-haptic (VH) crossmodal and haptic-haptic (HH) unimodal WM tasks. The neuronal activity recorded in the DLPFC in the delay period of both tasks indicates that the early-delay differential activity probably is related to the encoding of sample information with different strengths depending on task modality, that the late-delay differential activity reflects the associated (modality-independent) action component of haptic choice in both tasks (that is, the anticipation of the behavioral choice and/or active recall and maintenance of sample information for subsequent action), and that the sustained whole-delay differential activity likely bridges and integrates the sensory and action components. In addition, the VH late-delay differential activity was significantly diminished when the haptic choice was not required. Taken together, the results show that, in addition to the whole-delay differential activity, DLPFC neurons also show early- and late-delay differential activities. These previously unidentified findings indicate that DLPFC is capable of (i) holding the coded sample information (e.g., visual or tactile information) in the early-delay activity, (ii) retrieving the abstract information (orientations) of the sample (whether the sample has been haptic or visual) and holding it in the late-delay activity, and (iii) preparing for behavioral choice acting on that abstract information.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">25540412</PMID>
<DateCreated>
<Year>2015</Year>
<Month>01</Month>
<Day>14</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>04</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>10</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>112</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2015</Year>
<Month>Jan</Month>
<Day>13</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc. Natl. Acad. Sci. U.S.A.</ISOAbbreviation>
</Journal>
<ArticleTitle>Differential roles of delay-period neural activity in the monkey dorsolateral prefrontal cortex in visual-haptic crossmodal working memory.</ArticleTitle>
<Pagination>
<MedlinePgn>E214-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.1410130112</ELocationID>
<Abstract>
<AbstractText>Previous studies have shown that neurons of monkey dorsolateral prefrontal cortex (DLPFC) integrate information across modalities and maintain it throughout the delay period of working-memory (WM) tasks. However, the mechanisms of this temporal integration in the DLPFC are still poorly understood. In the present study, to further elucidate the role of the DLPFC in crossmodal WM, we trained monkeys to perform visuo-haptic (VH) crossmodal and haptic-haptic (HH) unimodal WM tasks. The neuronal activity recorded in the DLPFC in the delay period of both tasks indicates that the early-delay differential activity probably is related to the encoding of sample information with different strengths depending on task modality, that the late-delay differential activity reflects the associated (modality-independent) action component of haptic choice in both tasks (that is, the anticipation of the behavioral choice and/or active recall and maintenance of sample information for subsequent action), and that the sustained whole-delay differential activity likely bridges and integrates the sensory and action components. In addition, the VH late-delay differential activity was significantly diminished when the haptic choice was not required. Taken together, the results show that, in addition to the whole-delay differential activity, DLPFC neurons also show early- and late-delay differential activities. These previously unidentified findings indicate that DLPFC is capable of (i) holding the coded sample information (e.g., visual or tactile information) in the early-delay activity, (ii) retrieving the abstract information (orientations) of the sample (whether the sample has been haptic or visual) and holding it in the late-delay activity, and (iii) preparing for behavioral choice acting on that abstract information.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Liping</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Brain Functional Genomics (Ministry of Education & Science and Technology Commission of Shanghai Municipality), Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai 200062, China;</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Xianchun</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Brain Functional Genomics (Ministry of Education & Science and Technology Commission of Shanghai Municipality), Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China;</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hsiao</LastName>
<ForeName>Steven S</ForeName>
<Initials>SS</Initials>
<AffiliationInfo>
<Affiliation>Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218; Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205;</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lenz</LastName>
<ForeName>Fred A</ForeName>
<Initials>FA</Initials>
<AffiliationInfo>
<Affiliation>Department of Neurosurgery, Johns Hopkins University, Baltimore, MD 21287;</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bodner</LastName>
<ForeName>Mark</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>MIND Research Institute, Irvine, CA 92617; and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Yong-Di</ForeName>
<Initials>YD</Initials>
<AffiliationInfo>
<Affiliation>Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218; Department of Neurosurgery, Johns Hopkins University, Baltimore, MD 21287; yzhou12@jhmi.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fuster</LastName>
<ForeName>Joaquín M</ForeName>
<Initials>JM</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-0681-6444</Identifier>
<AffiliationInfo>
<Affiliation>Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90024.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>NS-44919</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 NS038493</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>12</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2000 May 18;405(6784):347-51</RefSource>
<PMID Version="1">10830963</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2013 May 30;497(7451):585-90</RefSource>
<PMID Version="1">23685452</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9777-82</RefSource>
<PMID Version="1">10944237</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Neurophysiol. 2000 Nov;17(6):575-91</RefSource>
<PMID Version="1">11151976</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurosci. 2000 Oct;1(1):59-65</RefSource>
<PMID Version="1">11252769</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Neurobiol. 2001 Apr;11(2):164-70</RefSource>
<PMID Version="1">11301235</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2001 May;30(2):319-33</RefSource>
<PMID Version="1">11394996</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2001 Jun 21;411(6840):953-6</RefSource>
<PMID Version="1">11418860</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann N Y Acad Sci. 2001 Jun;930:193-210</RefSource>
<PMID Version="1">11458830</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurosci. 2001 Nov;2(11):820-9</RefSource>
<PMID Version="1">11715058</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Rev Neurosci. 2002;13(4):313-45</RefSource>
<PMID Version="1">12542260</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1971 May;34(3):337-47</RefSource>
<PMID Version="1">4997822</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1971 Aug 13;173(3997):652-4</RefSource>
<PMID Version="1">4998337</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1973 Jan;36(1):61-78</RefSource>
<PMID Version="1">4196203</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 1974 Apr 19;70(2):346-9</RefSource>
<PMID Version="1">4207718</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1976 Jun 4;192(4243):1023-4</RefSource>
<PMID Version="1">818708</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 1981 Mar 30;209(2):375-94</RefSource>
<PMID Version="1">7225799</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Neurol. 1982 Sep;77(3):679-94</RefSource>
<PMID Version="1">7117470</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1989 Feb;61(2):331-49</RefSource>
<PMID Version="1">2918358</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1990 Apr;63(4):814-31</RefSource>
<PMID Version="1">2341879</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1993 Oct 21;365(6448):753-6</RefSource>
<PMID Version="1">8413653</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychol Rev. 1995 Apr;102(2):211-45</RefSource>
<PMID Version="1">7740089</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann N Y Acad Sci. 1995 Dec 15;769:71-83</RefSource>
<PMID Version="1">8595045</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann N Y Acad Sci. 1995 Dec 15;769:173-81</RefSource>
<PMID Version="1">8595024</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1996 Aug 15;16(16):5154-67</RefSource>
<PMID Version="1">8756444</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroreport. 1996 Aug 12;7(12):1905-8</RefSource>
<PMID Version="1">8905689</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1997 May 2;276(5313):821-4</RefSource>
<PMID Version="1">9115211</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1997 Sep;78(3):1263-75</RefSource>
<PMID Version="1">9310418</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Neurosci. 1997 Oct;20(10):451-9</RefSource>
<PMID Version="1">9347612</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):883-90</RefSource>
<PMID Version="1">9448255</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Learn Mem. 1998 Jul-Sep;70(1-2):268-74</RefSource>
<PMID Version="1">9753601</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 1999 Apr-May;9(3):213-21</RefSource>
<PMID Version="1">10355901</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroreport. 1999 Apr 26;10(6):1315-22</RefSource>
<PMID Version="1">10363946</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1999 Jun 3;399(6735):470-3</RefSource>
<PMID Version="1">10365959</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1999 Jul 1;19(13):5493-505</RefSource>
<PMID Version="1">10377358</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Cogn Sci. 2004 Apr;8(4):143-5</RefSource>
<PMID Version="1">15551481</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cogn Affect Behav Neurosci. 2004 Dec;4(4):444-65</RefSource>
<PMID Version="1">15849890</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscience. 2006 Apr 28;139(1):251-61</RefSource>
<PMID Version="1">16325345</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscience. 2006 Apr 28;139(1):173-80</RefSource>
<PMID Version="1">16326021</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10223-8</RefSource>
<PMID Version="1">17551017</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2008 Feb;18(2):243-53</RefSource>
<PMID Version="1">17548801</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2008 Sep;100(3):1407-19</RefSource>
<PMID Version="1">18562555</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2009;4(8):e6399</RefSource>
<PMID Version="1">19652716</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Cogn Sci. 2010 May;14(5):216-22</RefSource>
<PMID Version="1">20381406</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2011 Jul 20;31(29):10648-65</RefSource>
<PMID Version="1">21775608</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cogn Neurosci. 2012 Mar;24(3):664-76</RefSource>
<PMID Version="1">22098263</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cogn Neurosci. 2012 Jul;24(7):1634-44</RefSource>
<PMID Version="1">22452554</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2000 Jul;133(1):23-32</RefSource>
<PMID Version="1">10933207</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005133">Eye Movements</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005260">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008253">Macaca mulatta</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
<QualifierName MajorTopicYN="Y" UI="Q000523">psychology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008297">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008570">Memory, Short-Term</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009474">Neurons</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D010775">Photic Stimulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D010812">Physical Stimulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D017397">Prefrontal Cortex</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013647">Task Performance and Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013997">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D055698">Touch Perception</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014796">Visual Perception</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC4299181</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">cross-modal working memory</Keyword>
<Keyword MajorTopicYN="N">delay activity</Keyword>
<Keyword MajorTopicYN="N">monkey</Keyword>
<Keyword MajorTopicYN="N">prefrontal</Keyword>
<Keyword MajorTopicYN="N">single unit</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2014</Year>
<Month>12</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>12</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>12</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>5</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25540412</ArticleId>
<ArticleId IdType="pii">1410130112</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.1410130112</ArticleId>
<ArticleId IdType="pmc">PMC4299181</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000457 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000457 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25540412
   |texte=   Differential roles of delay-period neural activity in the monkey dorsolateral prefrontal cortex in visual-haptic crossmodal working memory.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:25540412" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024