Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A six degree-of-freedom god-object method for haptic display of rigid bodies with surface properties.

Identifieur interne : 002457 ( PubMed/Checkpoint ); précédent : 002456; suivant : 002458

A six degree-of-freedom god-object method for haptic display of rigid bodies with surface properties.

Auteurs : Michael Ortega [France] ; Stephane Redon ; Sabine Coquillart

Source :

RBID : pubmed:17356213

Abstract

This paper describes a generalization of the god-object method for haptic interaction between rigid bodies. Our approach separates the computation of the motion of the six degree-of-freedom god-object from the computation of the force applied to the user. The motion of the god-object is computed using continuous collision detection and constraint-based quasi-statics, which enables high-quality haptic interaction between contacting rigid bodies. The force applied to the user is computed using a novel constraint-based quasi-static approach, which allows us to suppress force artifacts typically found in previous methods. The constraint-based force applied to the user, which handles any number of simultaneous contact points, is computed within a few microseconds, while the update of the configuration of the rigid god-object is performed within a few milliseconds for rigid bodies containing up to tens of thousands of triangles. Our approach has been successfully tested on complex benchmarks. Our results show that the separation into asynchronous processes allows us to satisfy the different update rates required by the haptic and visual displays. Force shading and textures can be added and enlarge the range of haptic perception of a virtual environment. This paper is an extension of [1].

DOI: 10.1109/TVCG.2007.1028
PubMed: 17356213


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:17356213

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A six degree-of-freedom god-object method for haptic display of rigid bodies with surface properties.</title>
<author>
<name sortKey="Ortega, Michael" sort="Ortega, Michael" uniqKey="Ortega M" first="Michael" last="Ortega">Michael Ortega</name>
<affiliation wicri:level="1">
<nlm:affiliation>PSA Peugeot Citroën, INRIA Rhône-Alpes Research Unit, LIG, Saint Ismier Cedex, France. michael.ortega@inria.fr</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>PSA Peugeot Citroën, INRIA Rhône-Alpes Research Unit, LIG, Saint Ismier Cedex</wicri:regionArea>
<wicri:noRegion>Saint Ismier Cedex</wicri:noRegion>
<wicri:noRegion>Saint Ismier Cedex</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Redon, Stephane" sort="Redon, Stephane" uniqKey="Redon S" first="Stephane" last="Redon">Stephane Redon</name>
</author>
<author>
<name sortKey="Coquillart, Sabine" sort="Coquillart, Sabine" uniqKey="Coquillart S" first="Sabine" last="Coquillart">Sabine Coquillart</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="????">
<PubDate>
<MedlineDate>2007 May-Jun</MedlineDate>
</PubDate>
</date>
<idno type="doi">10.1109/TVCG.2007.1028</idno>
<idno type="RBID">pubmed:17356213</idno>
<idno type="pmid">17356213</idno>
<idno type="wicri:Area/PubMed/Corpus">001680</idno>
<idno type="wicri:Area/PubMed/Curation">001680</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002457</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A six degree-of-freedom god-object method for haptic display of rigid bodies with surface properties.</title>
<author>
<name sortKey="Ortega, Michael" sort="Ortega, Michael" uniqKey="Ortega M" first="Michael" last="Ortega">Michael Ortega</name>
<affiliation wicri:level="1">
<nlm:affiliation>PSA Peugeot Citroën, INRIA Rhône-Alpes Research Unit, LIG, Saint Ismier Cedex, France. michael.ortega@inria.fr</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>PSA Peugeot Citroën, INRIA Rhône-Alpes Research Unit, LIG, Saint Ismier Cedex</wicri:regionArea>
<wicri:noRegion>Saint Ismier Cedex</wicri:noRegion>
<wicri:noRegion>Saint Ismier Cedex</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Redon, Stephane" sort="Redon, Stephane" uniqKey="Redon S" first="Stephane" last="Redon">Stephane Redon</name>
</author>
<author>
<name sortKey="Coquillart, Sabine" sort="Coquillart, Sabine" uniqKey="Coquillart S" first="Sabine" last="Coquillart">Sabine Coquillart</name>
</author>
</analytic>
<series>
<title level="j">IEEE transactions on visualization and computer graphics</title>
<idno type="ISSN">1077-2626</idno>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper describes a generalization of the god-object method for haptic interaction between rigid bodies. Our approach separates the computation of the motion of the six degree-of-freedom god-object from the computation of the force applied to the user. The motion of the god-object is computed using continuous collision detection and constraint-based quasi-statics, which enables high-quality haptic interaction between contacting rigid bodies. The force applied to the user is computed using a novel constraint-based quasi-static approach, which allows us to suppress force artifacts typically found in previous methods. The constraint-based force applied to the user, which handles any number of simultaneous contact points, is computed within a few microseconds, while the update of the configuration of the rigid god-object is performed within a few milliseconds for rigid bodies containing up to tens of thousands of triangles. Our approach has been successfully tested on complex benchmarks. Our results show that the separation into asynchronous processes allows us to satisfy the different update rates required by the haptic and visual displays. Force shading and textures can be added and enlarge the range of haptic perception of a virtual environment. This paper is an extension of [1].</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE">
<PMID Version="1">17356213</PMID>
<DateCreated>
<Year>2007</Year>
<Month>03</Month>
<Day>14</Day>
</DateCreated>
<DateCompleted>
<Year>2007</Year>
<Month>05</Month>
<Day>03</Day>
</DateCompleted>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1077-2626</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>13</Volume>
<Issue>3</Issue>
<PubDate>
<MedlineDate>2007 May-Jun</MedlineDate>
</PubDate>
</JournalIssue>
<Title>IEEE transactions on visualization and computer graphics</Title>
<ISOAbbreviation>IEEE Trans Vis Comput Graph</ISOAbbreviation>
</Journal>
<ArticleTitle>A six degree-of-freedom god-object method for haptic display of rigid bodies with surface properties.</ArticleTitle>
<Pagination>
<MedlinePgn>458-69</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>This paper describes a generalization of the god-object method for haptic interaction between rigid bodies. Our approach separates the computation of the motion of the six degree-of-freedom god-object from the computation of the force applied to the user. The motion of the god-object is computed using continuous collision detection and constraint-based quasi-statics, which enables high-quality haptic interaction between contacting rigid bodies. The force applied to the user is computed using a novel constraint-based quasi-static approach, which allows us to suppress force artifacts typically found in previous methods. The constraint-based force applied to the user, which handles any number of simultaneous contact points, is computed within a few microseconds, while the update of the configuration of the rigid god-object is performed within a few milliseconds for rigid bodies containing up to tens of thousands of triangles. Our approach has been successfully tested on complex benchmarks. Our results show that the separation into asynchronous processes allows us to satisfy the different update rates required by the haptic and visual displays. Force shading and textures can be added and enlarge the range of haptic perception of a virtual environment. This paper is an extension of [1].</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ortega</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>PSA Peugeot Citroën, INRIA Rhône-Alpes Research Unit, LIG, Saint Ismier Cedex, France. michael.ortega@inria.fr</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Redon</LastName>
<ForeName>Stephane</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Coquillart</LastName>
<ForeName>Sabine</ForeName>
<Initials>S</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>IEEE Trans Vis Comput Graph</MedlineTA>
<NlmUniqueID>9891704</NlmUniqueID>
<ISSNLinking>1077-2626</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>3</Month>
<Day>16</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>3</Month>
<Day>16</Day>
<Hour>9</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>3</Month>
<Day>16</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1109/TVCG.2007.1028</ArticleId>
<ArticleId IdType="pubmed">17356213</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Coquillart, Sabine" sort="Coquillart, Sabine" uniqKey="Coquillart S" first="Sabine" last="Coquillart">Sabine Coquillart</name>
<name sortKey="Redon, Stephane" sort="Redon, Stephane" uniqKey="Redon S" first="Stephane" last="Redon">Stephane Redon</name>
</noCountry>
<country name="France">
<noRegion>
<name sortKey="Ortega, Michael" sort="Ortega, Michael" uniqKey="Ortega M" first="Michael" last="Ortega">Michael Ortega</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002457 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 002457 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:17356213
   |texte=   A six degree-of-freedom god-object method for haptic display of rigid bodies with surface properties.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:17356213" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024