Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A portable telerehabilitation system for remote evaluations of impaired elbows in neurological disorders.

Identifieur interne : 001337 ( PubMed/Checkpoint ); précédent : 001336; suivant : 001338

A portable telerehabilitation system for remote evaluations of impaired elbows in neurological disorders.

Auteurs : Hyung-Soon Park [États-Unis] ; Qiyu Peng ; Li-Qun Zhang

Source :

RBID : pubmed:18586603

English descriptors

Abstract

A portable teleassessment system was designed for remote evaluation of elbow impairments in patients with neurological disorders. A master device and a slave device were used to drive a mannequin arm and the patient's arm, respectively. The elbow flexion angle and torque were measured at both the master and slave devices, and sent to each other for teleoperation. To evaluate spasticity/contracture of the patient's elbow remotely, the clinician asked the patient to relax the elbow, moved the mannequin arm at a selected velocity, and haptically felt the resistance from the patient's elbow. In other tasks, the patient moved his/her elbow voluntarily and the clinician observed the corresponding mannequin arm movement and determined the active range of motion (ROM). The clinician could also remotely resist the patient's movement and evaluate the muscle strength. To minimize the effect of network latency, two different teleoperation schemes were used depending on the speed of the tasks. For slow movement tasks, real-time teleoperations were performed using control architectures that considered causality of the tasks, with performance similar to that during an in-person examination. For tasks involving fast movements, a teach-and-replay teleoperation scheme was used which provided the examiner with transparent and stable haptic feeling. Overall, the teleassessment system allowed the clinician to remotely evaluate the impaired elbow of stroke survivors, including assessment of the passive ROM, active ROM, muscle strength, velocity-dependent spasticity, and catch angle.

DOI: 10.1109/TNSRE.2008.920067
PubMed: 18586603


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:18586603

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A portable telerehabilitation system for remote evaluations of impaired elbows in neurological disorders.</title>
<author>
<name sortKey="Park, Hyung Soon" sort="Park, Hyung Soon" uniqKey="Park H" first="Hyung-Soon" last="Park">Hyung-Soon Park</name>
<affiliation wicri:level="2">
<nlm:affiliation>Rehabilitation Institute of Chicago, Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL 60611, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Rehabilitation Institute of Chicago, Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL 60611</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Peng, Qiyu" sort="Peng, Qiyu" uniqKey="Peng Q" first="Qiyu" last="Peng">Qiyu Peng</name>
</author>
<author>
<name sortKey="Zhang, Li Qun" sort="Zhang, Li Qun" uniqKey="Zhang L" first="Li-Qun" last="Zhang">Li-Qun Zhang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="doi">10.1109/TNSRE.2008.920067</idno>
<idno type="RBID">pubmed:18586603</idno>
<idno type="pmid">18586603</idno>
<idno type="wicri:Area/PubMed/Corpus">001428</idno>
<idno type="wicri:Area/PubMed/Curation">001428</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001337</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A portable telerehabilitation system for remote evaluations of impaired elbows in neurological disorders.</title>
<author>
<name sortKey="Park, Hyung Soon" sort="Park, Hyung Soon" uniqKey="Park H" first="Hyung-Soon" last="Park">Hyung-Soon Park</name>
<affiliation wicri:level="2">
<nlm:affiliation>Rehabilitation Institute of Chicago, Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL 60611, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Rehabilitation Institute of Chicago, Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL 60611</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Peng, Qiyu" sort="Peng, Qiyu" uniqKey="Peng Q" first="Qiyu" last="Peng">Qiyu Peng</name>
</author>
<author>
<name sortKey="Zhang, Li Qun" sort="Zhang, Li Qun" uniqKey="Zhang L" first="Li-Qun" last="Zhang">Li-Qun Zhang</name>
</author>
</analytic>
<series>
<title level="j">IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society</title>
<idno type="eISSN">1558-0210</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Computer Systems</term>
<term>Diagnosis, Computer-Assisted (instrumentation)</term>
<term>Diagnosis, Computer-Assisted (methods)</term>
<term>Elbow Joint</term>
<term>Equipment Design</term>
<term>Equipment Failure Analysis</term>
<term>Humans</term>
<term>Miniaturization</term>
<term>Nervous System Diseases (diagnosis)</term>
<term>Nervous System Diseases (rehabilitation)</term>
<term>Remote Consultation (instrumentation)</term>
<term>Remote Consultation (methods)</term>
<term>Therapy, Computer-Assisted (instrumentation)</term>
<term>Therapy, Computer-Assisted (methods)</term>
</keywords>
<keywords scheme="MESH" qualifier="diagnosis" xml:lang="en">
<term>Nervous System Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="en">
<term>Diagnosis, Computer-Assisted</term>
<term>Remote Consultation</term>
<term>Therapy, Computer-Assisted</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Diagnosis, Computer-Assisted</term>
<term>Remote Consultation</term>
<term>Therapy, Computer-Assisted</term>
</keywords>
<keywords scheme="MESH" qualifier="rehabilitation" xml:lang="en">
<term>Nervous System Diseases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Computer Systems</term>
<term>Elbow Joint</term>
<term>Equipment Design</term>
<term>Equipment Failure Analysis</term>
<term>Humans</term>
<term>Miniaturization</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A portable teleassessment system was designed for remote evaluation of elbow impairments in patients with neurological disorders. A master device and a slave device were used to drive a mannequin arm and the patient's arm, respectively. The elbow flexion angle and torque were measured at both the master and slave devices, and sent to each other for teleoperation. To evaluate spasticity/contracture of the patient's elbow remotely, the clinician asked the patient to relax the elbow, moved the mannequin arm at a selected velocity, and haptically felt the resistance from the patient's elbow. In other tasks, the patient moved his/her elbow voluntarily and the clinician observed the corresponding mannequin arm movement and determined the active range of motion (ROM). The clinician could also remotely resist the patient's movement and evaluate the muscle strength. To minimize the effect of network latency, two different teleoperation schemes were used depending on the speed of the tasks. For slow movement tasks, real-time teleoperations were performed using control architectures that considered causality of the tasks, with performance similar to that during an in-person examination. For tasks involving fast movements, a teach-and-replay teleoperation scheme was used which provided the examiner with transparent and stable haptic feeling. Overall, the teleassessment system allowed the clinician to remotely evaluate the impaired elbow of stroke survivors, including assessment of the passive ROM, active ROM, muscle strength, velocity-dependent spasticity, and catch angle.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">18586603</PMID>
<DateCreated>
<Year>2008</Year>
<Month>06</Month>
<Day>30</Day>
</DateCreated>
<DateCompleted>
<Year>2008</Year>
<Month>07</Month>
<Day>25</Day>
</DateCompleted>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1558-0210</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>16</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2008</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society</Title>
<ISOAbbreviation>IEEE Trans Neural Syst Rehabil Eng</ISOAbbreviation>
</Journal>
<ArticleTitle>A portable telerehabilitation system for remote evaluations of impaired elbows in neurological disorders.</ArticleTitle>
<Pagination>
<MedlinePgn>245-54</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1109/TNSRE.2008.920067</ELocationID>
<Abstract>
<AbstractText>A portable teleassessment system was designed for remote evaluation of elbow impairments in patients with neurological disorders. A master device and a slave device were used to drive a mannequin arm and the patient's arm, respectively. The elbow flexion angle and torque were measured at both the master and slave devices, and sent to each other for teleoperation. To evaluate spasticity/contracture of the patient's elbow remotely, the clinician asked the patient to relax the elbow, moved the mannequin arm at a selected velocity, and haptically felt the resistance from the patient's elbow. In other tasks, the patient moved his/her elbow voluntarily and the clinician observed the corresponding mannequin arm movement and determined the active range of motion (ROM). The clinician could also remotely resist the patient's movement and evaluate the muscle strength. To minimize the effect of network latency, two different teleoperation schemes were used depending on the speed of the tasks. For slow movement tasks, real-time teleoperations were performed using control architectures that considered causality of the tasks, with performance similar to that during an in-person examination. For tasks involving fast movements, a teach-and-replay teleoperation scheme was used which provided the examiner with transparent and stable haptic feeling. Overall, the teleassessment system allowed the clinician to remotely evaluate the impaired elbow of stroke survivors, including assessment of the passive ROM, active ROM, muscle strength, velocity-dependent spasticity, and catch angle.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Park</LastName>
<ForeName>Hyung-Soon</ForeName>
<Initials>HS</Initials>
<AffiliationInfo>
<Affiliation>Rehabilitation Institute of Chicago, Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL 60611, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Peng</LastName>
<ForeName>Qiyu</ForeName>
<Initials>Q</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Li-Qun</ForeName>
<Initials>LQ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D023362">Evaluation Studies</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>IEEE Trans Neural Syst Rehabil Eng</MedlineTA>
<NlmUniqueID>101097023</NlmUniqueID>
<ISSNLinking>1534-4320</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003199">Computer Systems</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003936">Diagnosis, Computer-Assisted</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000295">instrumentation</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D004551">Elbow Joint</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004867">Equipment Design</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D019544">Equipment Failure Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008904">Miniaturization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009422">Nervous System Diseases</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000175">diagnosis</QualifierName>
<QualifierName MajorTopicYN="Y" UI="Q000534">rehabilitation</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D019114">Remote Consultation</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000295">instrumentation</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013813">Therapy, Computer-Assisted</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000295">instrumentation</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>7</Month>
<Day>1</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>7</Month>
<Day>26</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>7</Month>
<Day>1</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1109/TNSRE.2008.920067</ArticleId>
<ArticleId IdType="pubmed">18586603</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Illinois</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Peng, Qiyu" sort="Peng, Qiyu" uniqKey="Peng Q" first="Qiyu" last="Peng">Qiyu Peng</name>
<name sortKey="Zhang, Li Qun" sort="Zhang, Li Qun" uniqKey="Zhang L" first="Li-Qun" last="Zhang">Li-Qun Zhang</name>
</noCountry>
<country name="États-Unis">
<region name="Illinois">
<name sortKey="Park, Hyung Soon" sort="Park, Hyung Soon" uniqKey="Park H" first="Hyung-Soon" last="Park">Hyung-Soon Park</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001337 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001337 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:18586603
   |texte=   A portable telerehabilitation system for remote evaluations of impaired elbows in neurological disorders.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:18586603" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024