Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Haptic feedback control in medical robots through fractional viscoelastic tissue model.

Identifieur interne : 000D54 ( PubMed/Checkpoint ); précédent : 000D53; suivant : 000D55

Haptic feedback control in medical robots through fractional viscoelastic tissue model.

Auteurs : Yo Kobayashi [Japon] ; Pedro Moreira ; Chao Liu ; Philippe Poignet ; Nabil Zemiti ; Masakatsu G. Fujie

Source :

RBID : pubmed:22255877

English descriptors

Abstract

In this paper, we discuss the design of an adaptive control system for robot-assisted surgery with haptic feedback. Through a haptic device, the surgeon teleoperates the medical instrument in free space, fixed on a remote robot or in contact. In free space, the surgeon feels the motion of the robot. In the present paper, we evaluated the performance of the controller on viscoelastic tissue, modeled by a fractional derivative equation. In addition, we propose a novel controller using an integer formalization process that is suitable for these tissue properties. The simulation results suggested that performance, in terms of force control and telepresence, became poorer when the conventional controller, which was designed for elastic target object, was applied to the viscoelastic tissues. In contrast, the results suggested that our proposed controller maintained its performance on the viscoelastic tissues.

DOI: 10.1109/IEMBS.2011.6091653
PubMed: 22255877


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:22255877

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Haptic feedback control in medical robots through fractional viscoelastic tissue model.</title>
<author>
<name sortKey="Kobayashi, Yo" sort="Kobayashi, Yo" uniqKey="Kobayashi Y" first="Yo" last="Kobayashi">Yo Kobayashi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Science and Engineering, Waseda University, Japan. you-k@fuji.waseda.jp</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Faculty of Science and Engineering, Waseda University</wicri:regionArea>
<wicri:noRegion>Waseda University</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Moreira, Pedro" sort="Moreira, Pedro" uniqKey="Moreira P" first="Pedro" last="Moreira">Pedro Moreira</name>
</author>
<author>
<name sortKey="Liu, Chao" sort="Liu, Chao" uniqKey="Liu C" first="Chao" last="Liu">Chao Liu</name>
</author>
<author>
<name sortKey="Poignet, Philippe" sort="Poignet, Philippe" uniqKey="Poignet P" first="Philippe" last="Poignet">Philippe Poignet</name>
</author>
<author>
<name sortKey="Zemiti, Nabil" sort="Zemiti, Nabil" uniqKey="Zemiti N" first="Nabil" last="Zemiti">Nabil Zemiti</name>
</author>
<author>
<name sortKey="Fujie, Masakatsu G" sort="Fujie, Masakatsu G" uniqKey="Fujie M" first="Masakatsu G" last="Fujie">Masakatsu G. Fujie</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="doi">10.1109/IEMBS.2011.6091653</idno>
<idno type="RBID">pubmed:22255877</idno>
<idno type="pmid">22255877</idno>
<idno type="wicri:Area/PubMed/Corpus">000D11</idno>
<idno type="wicri:Area/PubMed/Curation">000D11</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000D54</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Haptic feedback control in medical robots through fractional viscoelastic tissue model.</title>
<author>
<name sortKey="Kobayashi, Yo" sort="Kobayashi, Yo" uniqKey="Kobayashi Y" first="Yo" last="Kobayashi">Yo Kobayashi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Science and Engineering, Waseda University, Japan. you-k@fuji.waseda.jp</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Faculty of Science and Engineering, Waseda University</wicri:regionArea>
<wicri:noRegion>Waseda University</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Moreira, Pedro" sort="Moreira, Pedro" uniqKey="Moreira P" first="Pedro" last="Moreira">Pedro Moreira</name>
</author>
<author>
<name sortKey="Liu, Chao" sort="Liu, Chao" uniqKey="Liu C" first="Chao" last="Liu">Chao Liu</name>
</author>
<author>
<name sortKey="Poignet, Philippe" sort="Poignet, Philippe" uniqKey="Poignet P" first="Philippe" last="Poignet">Philippe Poignet</name>
</author>
<author>
<name sortKey="Zemiti, Nabil" sort="Zemiti, Nabil" uniqKey="Zemiti N" first="Nabil" last="Zemiti">Nabil Zemiti</name>
</author>
<author>
<name sortKey="Fujie, Masakatsu G" sort="Fujie, Masakatsu G" uniqKey="Fujie M" first="Masakatsu G" last="Fujie">Masakatsu G. Fujie</name>
</author>
</analytic>
<series>
<title level="j">Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference</title>
<idno type="ISSN">1557-170X</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms</term>
<term>Animals</term>
<term>Computer Simulation</term>
<term>Elasticity</term>
<term>Equipment Design</term>
<term>Feedback</term>
<term>Humans</term>
<term>Liver (pathology)</term>
<term>Minimally Invasive Surgical Procedures (methods)</term>
<term>Models, Statistical</term>
<term>Motion</term>
<term>Reproducibility of Results</term>
<term>Robotics (instrumentation)</term>
<term>Robotics (methods)</term>
<term>Stress, Mechanical</term>
<term>Surgery, Computer-Assisted (instrumentation)</term>
<term>Telemedicine (methods)</term>
<term>User-Computer Interface</term>
<term>Viscosity</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="en">
<term>Robotics</term>
<term>Surgery, Computer-Assisted</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Minimally Invasive Surgical Procedures</term>
<term>Robotics</term>
<term>Telemedicine</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Liver</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Animals</term>
<term>Computer Simulation</term>
<term>Elasticity</term>
<term>Equipment Design</term>
<term>Feedback</term>
<term>Humans</term>
<term>Models, Statistical</term>
<term>Motion</term>
<term>Reproducibility of Results</term>
<term>Stress, Mechanical</term>
<term>User-Computer Interface</term>
<term>Viscosity</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this paper, we discuss the design of an adaptive control system for robot-assisted surgery with haptic feedback. Through a haptic device, the surgeon teleoperates the medical instrument in free space, fixed on a remote robot or in contact. In free space, the surgeon feels the motion of the robot. In the present paper, we evaluated the performance of the controller on viscoelastic tissue, modeled by a fractional derivative equation. In addition, we propose a novel controller using an integer formalization process that is suitable for these tissue properties. The simulation results suggested that performance, in terms of force control and telepresence, became poorer when the conventional controller, which was designed for elastic target object, was applied to the viscoelastic tissues. In contrast, the results suggested that our proposed controller maintained its performance on the viscoelastic tissues.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">22255877</PMID>
<DateCreated>
<Year>2012</Year>
<Month>01</Month>
<Day>18</Day>
</DateCreated>
<DateCompleted>
<Year>2012</Year>
<Month>08</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>11</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1557-170X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>2011</Volume>
<PubDate>
<Year>2011</Year>
</PubDate>
</JournalIssue>
<Title>Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference</Title>
<ISOAbbreviation>Conf Proc IEEE Eng Med Biol Soc</ISOAbbreviation>
</Journal>
<ArticleTitle>Haptic feedback control in medical robots through fractional viscoelastic tissue model.</ArticleTitle>
<Pagination>
<MedlinePgn>6704-8</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1109/IEMBS.2011.6091653</ELocationID>
<Abstract>
<AbstractText>In this paper, we discuss the design of an adaptive control system for robot-assisted surgery with haptic feedback. Through a haptic device, the surgeon teleoperates the medical instrument in free space, fixed on a remote robot or in contact. In free space, the surgeon feels the motion of the robot. In the present paper, we evaluated the performance of the controller on viscoelastic tissue, modeled by a fractional derivative equation. In addition, we propose a novel controller using an integer formalization process that is suitable for these tissue properties. The simulation results suggested that performance, in terms of force control and telepresence, became poorer when the conventional controller, which was designed for elastic target object, was applied to the viscoelastic tissues. In contrast, the results suggested that our proposed controller maintained its performance on the viscoelastic tissues.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kobayashi</LastName>
<ForeName>Yo</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Science and Engineering, Waseda University, Japan. you-k@fuji.waseda.jp</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Moreira</LastName>
<ForeName>Pedro</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Chao</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Poignet</LastName>
<ForeName>Philippe</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zemiti</LastName>
<ForeName>Nabil</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fujie</LastName>
<ForeName>Masakatsu G</ForeName>
<Initials>MG</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Conf Proc IEEE Eng Med Biol Soc</MedlineTA>
<NlmUniqueID>101243413</NlmUniqueID>
<ISSNLinking>1557-170X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000465">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003198">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004548">Elasticity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004867">Equipment Design</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005246">Feedback</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008099">Liver</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000473">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D019060">Minimally Invasive Surgical Procedures</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D015233">Models, Statistical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009038">Motion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D015203">Reproducibility of Results</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D012371">Robotics</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000295">instrumentation</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013314">Stress, Mechanical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D025321">Surgery, Computer-Assisted</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000295">instrumentation</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D017216">Telemedicine</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014584">User-Computer Interface</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014783">Viscosity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>1</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>1</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>8</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1109/IEMBS.2011.6091653</ArticleId>
<ArticleId IdType="pubmed">22255877</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Fujie, Masakatsu G" sort="Fujie, Masakatsu G" uniqKey="Fujie M" first="Masakatsu G" last="Fujie">Masakatsu G. Fujie</name>
<name sortKey="Liu, Chao" sort="Liu, Chao" uniqKey="Liu C" first="Chao" last="Liu">Chao Liu</name>
<name sortKey="Moreira, Pedro" sort="Moreira, Pedro" uniqKey="Moreira P" first="Pedro" last="Moreira">Pedro Moreira</name>
<name sortKey="Poignet, Philippe" sort="Poignet, Philippe" uniqKey="Poignet P" first="Philippe" last="Poignet">Philippe Poignet</name>
<name sortKey="Zemiti, Nabil" sort="Zemiti, Nabil" uniqKey="Zemiti N" first="Nabil" last="Zemiti">Nabil Zemiti</name>
</noCountry>
<country name="Japon">
<noRegion>
<name sortKey="Kobayashi, Yo" sort="Kobayashi, Yo" uniqKey="Kobayashi Y" first="Yo" last="Kobayashi">Yo Kobayashi</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D54 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000D54 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:22255877
   |texte=   Haptic feedback control in medical robots through fractional viscoelastic tissue model.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:22255877" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024