Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Haptic interaction of touch and proprioception: implications for neuroprosthetics.

Identifieur interne : 000D53 ( PubMed/Checkpoint ); précédent : 000D52; suivant : 000D54

Haptic interaction of touch and proprioception: implications for neuroprosthetics.

Auteurs : Liliana Rincon-Gonzalez [États-Unis] ; Jay P. Warren ; David M. Meller ; Stephen Helms Tillery

Source :

RBID : pubmed:21984518

English descriptors

Abstract

Somatosensation is divided into multiple discrete modalities that we think of separably: e.g., tactile, proprioceptive, and temperature sensation. However, in processes such as haptics,those modalities all interact. If one intended to artificially generate a sensation that could be used for stereognosis, for example, it would be crucial to understand these interactions. We are presently examining the relationship between tactile and proprioceptive modalities in this context. In this overview of some of our recent work, we show that signals that would normally be attributed to two of these systems separately, tactile contact and self-movement, interact both perceptually and physiologically in ways that complicate the understanding of haptic processing. In the first study described here, we show that a tactile illusion on the fingertips, the cutaneous rabbit effect, can be abolished by changing the posture of the fingers. We then discuss activity in primary somatosensory cortical neurons illustrating the interrelationship of tactile and postural signals. In this study, we used a robot-enhanced virtual environment to show that many neurons in primary somatosensory cortex with cutaneous receptive fields encode elements both of tactile contact and self-motion. We then show the results of studies examining the structure of the process which extracts the spatial location of the hand from proprioceptive signals. The structure of the spatial errors in these maps indicates that the proprioceptive-spatial map is stable but individually constructed.These seemingly disparate studies lead us to suggest that tactile sensation is encoded in a 2-D map, but one which undergoes continual dynamic modification by an underlying proprioceptive map. Understanding how the disparate signals that comprise the somatosensory system are processed to produce sensation is an important step in realizing the kind of seamless integration aspired to in neuroprosthetics.

DOI: 10.1109/TNSRE.2011.2166808
PubMed: 21984518


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:21984518

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Haptic interaction of touch and proprioception: implications for neuroprosthetics.</title>
<author>
<name sortKey="Rincon Gonzalez, Liliana" sort="Rincon Gonzalez, Liliana" uniqKey="Rincon Gonzalez L" first="Liliana" last="Rincon-Gonzalez">Liliana Rincon-Gonzalez</name>
<affiliation wicri:level="2">
<nlm:affiliation>Harrington Program, Biomedical Engineering, Arizona State University, Tempe, AZ 85287, USA. lrinco1@asu.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Harrington Program, Biomedical Engineering, Arizona State University, Tempe, AZ 85287</wicri:regionArea>
<placeName>
<region type="state">Arizona</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Warren, Jay P" sort="Warren, Jay P" uniqKey="Warren J" first="Jay P" last="Warren">Jay P. Warren</name>
</author>
<author>
<name sortKey="Meller, David M" sort="Meller, David M" uniqKey="Meller D" first="David M" last="Meller">David M. Meller</name>
</author>
<author>
<name sortKey="Tillery, Stephen Helms" sort="Tillery, Stephen Helms" uniqKey="Tillery S" first="Stephen Helms" last="Tillery">Stephen Helms Tillery</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="doi">10.1109/TNSRE.2011.2166808</idno>
<idno type="RBID">pubmed:21984518</idno>
<idno type="pmid">21984518</idno>
<idno type="wicri:Area/PubMed/Corpus">000D95</idno>
<idno type="wicri:Area/PubMed/Curation">000D95</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000D53</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Haptic interaction of touch and proprioception: implications for neuroprosthetics.</title>
<author>
<name sortKey="Rincon Gonzalez, Liliana" sort="Rincon Gonzalez, Liliana" uniqKey="Rincon Gonzalez L" first="Liliana" last="Rincon-Gonzalez">Liliana Rincon-Gonzalez</name>
<affiliation wicri:level="2">
<nlm:affiliation>Harrington Program, Biomedical Engineering, Arizona State University, Tempe, AZ 85287, USA. lrinco1@asu.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Harrington Program, Biomedical Engineering, Arizona State University, Tempe, AZ 85287</wicri:regionArea>
<placeName>
<region type="state">Arizona</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Warren, Jay P" sort="Warren, Jay P" uniqKey="Warren J" first="Jay P" last="Warren">Jay P. Warren</name>
</author>
<author>
<name sortKey="Meller, David M" sort="Meller, David M" uniqKey="Meller D" first="David M" last="Meller">David M. Meller</name>
</author>
<author>
<name sortKey="Tillery, Stephen Helms" sort="Tillery, Stephen Helms" uniqKey="Tillery S" first="Stephen Helms" last="Tillery">Stephen Helms Tillery</name>
</author>
</analytic>
<series>
<title level="j">IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society</title>
<idno type="eISSN">1558-0210</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Fingers (innervation)</term>
<term>Fingers (physiology)</term>
<term>Humans</term>
<term>Posture (physiology)</term>
<term>Proprioception (physiology)</term>
<term>Prostheses and Implants</term>
<term>Prosthesis Design (methods)</term>
<term>Robotics</term>
<term>Somatosensory Cortex (physiology)</term>
<term>Touch (physiology)</term>
</keywords>
<keywords scheme="MESH" qualifier="innervation" xml:lang="en">
<term>Fingers</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Prosthesis Design</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Fingers</term>
<term>Posture</term>
<term>Proprioception</term>
<term>Somatosensory Cortex</term>
<term>Touch</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Humans</term>
<term>Prostheses and Implants</term>
<term>Robotics</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Somatosensation is divided into multiple discrete modalities that we think of separably: e.g., tactile, proprioceptive, and temperature sensation. However, in processes such as haptics,those modalities all interact. If one intended to artificially generate a sensation that could be used for stereognosis, for example, it would be crucial to understand these interactions. We are presently examining the relationship between tactile and proprioceptive modalities in this context. In this overview of some of our recent work, we show that signals that would normally be attributed to two of these systems separately, tactile contact and self-movement, interact both perceptually and physiologically in ways that complicate the understanding of haptic processing. In the first study described here, we show that a tactile illusion on the fingertips, the cutaneous rabbit effect, can be abolished by changing the posture of the fingers. We then discuss activity in primary somatosensory cortical neurons illustrating the interrelationship of tactile and postural signals. In this study, we used a robot-enhanced virtual environment to show that many neurons in primary somatosensory cortex with cutaneous receptive fields encode elements both of tactile contact and self-motion. We then show the results of studies examining the structure of the process which extracts the spatial location of the hand from proprioceptive signals. The structure of the spatial errors in these maps indicates that the proprioceptive-spatial map is stable but individually constructed.These seemingly disparate studies lead us to suggest that tactile sensation is encoded in a 2-D map, but one which undergoes continual dynamic modification by an underlying proprioceptive map. Understanding how the disparate signals that comprise the somatosensory system are processed to produce sensation is an important step in realizing the kind of seamless integration aspired to in neuroprosthetics.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">21984518</PMID>
<DateCreated>
<Year>2011</Year>
<Month>11</Month>
<Day>15</Day>
</DateCreated>
<DateCompleted>
<Year>2012</Year>
<Month>02</Month>
<Day>07</Day>
</DateCompleted>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1558-0210</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>19</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2011</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society</Title>
<ISOAbbreviation>IEEE Trans Neural Syst Rehabil Eng</ISOAbbreviation>
</Journal>
<ArticleTitle>Haptic interaction of touch and proprioception: implications for neuroprosthetics.</ArticleTitle>
<Pagination>
<MedlinePgn>490-500</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1109/TNSRE.2011.2166808</ELocationID>
<Abstract>
<AbstractText>Somatosensation is divided into multiple discrete modalities that we think of separably: e.g., tactile, proprioceptive, and temperature sensation. However, in processes such as haptics,those modalities all interact. If one intended to artificially generate a sensation that could be used for stereognosis, for example, it would be crucial to understand these interactions. We are presently examining the relationship between tactile and proprioceptive modalities in this context. In this overview of some of our recent work, we show that signals that would normally be attributed to two of these systems separately, tactile contact and self-movement, interact both perceptually and physiologically in ways that complicate the understanding of haptic processing. In the first study described here, we show that a tactile illusion on the fingertips, the cutaneous rabbit effect, can be abolished by changing the posture of the fingers. We then discuss activity in primary somatosensory cortical neurons illustrating the interrelationship of tactile and postural signals. In this study, we used a robot-enhanced virtual environment to show that many neurons in primary somatosensory cortex with cutaneous receptive fields encode elements both of tactile contact and self-motion. We then show the results of studies examining the structure of the process which extracts the spatial location of the hand from proprioceptive signals. The structure of the spatial errors in these maps indicates that the proprioceptive-spatial map is stable but individually constructed.These seemingly disparate studies lead us to suggest that tactile sensation is encoded in a 2-D map, but one which undergoes continual dynamic modification by an underlying proprioceptive map. Understanding how the disparate signals that comprise the somatosensory system are processed to produce sensation is an important step in realizing the kind of seamless integration aspired to in neuroprosthetics.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rincon-Gonzalez</LastName>
<ForeName>Liliana</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Harrington Program, Biomedical Engineering, Arizona State University, Tempe, AZ 85287, USA. lrinco1@asu.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Warren</LastName>
<ForeName>Jay P</ForeName>
<Initials>JP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Meller</LastName>
<ForeName>David M</ForeName>
<Initials>DM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tillery</LastName>
<ForeName>Stephen Helms</ForeName>
<Initials>SH</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>5R01-NS050256</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>5R01-NS063372-02S1</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>5R01-NS063372-03</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>IEEE Trans Neural Syst Rehabil Eng</MedlineTA>
<NlmUniqueID>101097023</NlmUniqueID>
<ISSNLinking>1534-4320</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005385">Fingers</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000294">innervation</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D011187">Posture</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D011434">Proprioception</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D019736">Prostheses and Implants</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D011474">Prosthesis Design</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D012371">Robotics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013003">Somatosensory Cortex</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014110">Touch</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>10</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>10</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>2</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1109/TNSRE.2011.2166808</ArticleId>
<ArticleId IdType="pubmed">21984518</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Arizona</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Meller, David M" sort="Meller, David M" uniqKey="Meller D" first="David M" last="Meller">David M. Meller</name>
<name sortKey="Tillery, Stephen Helms" sort="Tillery, Stephen Helms" uniqKey="Tillery S" first="Stephen Helms" last="Tillery">Stephen Helms Tillery</name>
<name sortKey="Warren, Jay P" sort="Warren, Jay P" uniqKey="Warren J" first="Jay P" last="Warren">Jay P. Warren</name>
</noCountry>
<country name="États-Unis">
<region name="Arizona">
<name sortKey="Rincon Gonzalez, Liliana" sort="Rincon Gonzalez, Liliana" uniqKey="Rincon Gonzalez L" first="Liliana" last="Rincon-Gonzalez">Liliana Rincon-Gonzalez</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D53 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000D53 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:21984518
   |texte=   Haptic interaction of touch and proprioception: implications for neuroprosthetics.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:21984518" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024