Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Energy margins in dynamic object manipulation

Identifieur interne : 001421 ( Pmc/Curation ); précédent : 001420; suivant : 001422

Energy margins in dynamic object manipulation

Auteurs : Christopher J. Hasson [États-Unis] ; Tian Shen [États-Unis] ; Dagmar Sternad [États-Unis]

Source :

RBID : PMC:3544966

Abstract

Many tasks require humans to manipulate dynamically complex objects and maintain appropriate safety margins, such as placing a cup of coffee on a coaster without spilling. This study examined how humans learn such safety margins and how they are shaped by task constraints and changing variability with improved skill. Eighteen subjects used a manipulandum to transport a shallow virtual cup containing a ball to a target without losing the ball. Half were to complete the cup transit in a comfortable target time of 2 s (a redundant task with infinitely many equivalent solutions), and the other half in minimum time (a nonredundant task with one explicit cost to optimize). The safety margin was defined as the ball energy relative to escape, i.e., as an energy margin. The first hypothesis, that subjects converge to a single strategy in the minimum-time task but choose different strategies in the less constrained target-time task, was not supported. Both groups developed individualized strategies with practice. The second hypothesis, that subjects decrease safety margins in the minimum-time task but increase them in the target-time task, was supported. The third hypothesis, that in both tasks subjects modulate energy margins according to their execution variability, was partially supported. In the target-time group, changes in energy margins correlated positively with changes in execution variability; in the minimum-time group, such a relation was observed only at the end of practice, not across practice. These results show that when learning a redundant object manipulation task, most subjects increase their safety margins and shape their movement strategies in accordance with their changing variability.


Url:
DOI: 10.1152/jn.00019.2012
PubMed: 22592302
PubMed Central: 3544966

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:3544966

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Energy margins in dynamic object manipulation</title>
<author>
<name sortKey="Hasson, Christopher J" sort="Hasson, Christopher J" uniqKey="Hasson C" first="Christopher J." last="Hasson">Christopher J. Hasson</name>
<affiliation wicri:level="2">
<nlm:aff id="aff1">Department of Biology, Northeastern University, Boston, Massachusetts;</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Department of Biology, Northeastern University, Boston</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Shen, Tian" sort="Shen, Tian" uniqKey="Shen T" first="Tian" last="Shen">Tian Shen</name>
<affiliation wicri:level="2">
<nlm:aff id="aff2">Department of Physics, Northeastern University, Boston, Massachusetts;</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Department of Physics, Northeastern University, Boston</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Sternad, Dagmar" sort="Sternad, Dagmar" uniqKey="Sternad D" first="Dagmar" last="Sternad">Dagmar Sternad</name>
<affiliation wicri:level="2">
<nlm:aff id="aff1">Department of Biology, Northeastern University, Boston, Massachusetts;</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Department of Biology, Northeastern University, Boston</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="aff2">Department of Physics, Northeastern University, Boston, Massachusetts;</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Department of Physics, Northeastern University, Boston</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff wicri:cut="; and" id="aff3">Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Department of Electrical and Computer Engineering, Northeastern University, Boston</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="aff4">Center for Interdisciplinary Research in Complex Systems, Northeastern University, Boston, Massachusetts</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Center for Interdisciplinary Research in Complex Systems, Northeastern University, Boston</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">22592302</idno>
<idno type="pmc">3544966</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3544966</idno>
<idno type="RBID">PMC:3544966</idno>
<idno type="doi">10.1152/jn.00019.2012</idno>
<date when="2012">2012</date>
<idno type="wicri:Area/Pmc/Corpus">001421</idno>
<idno type="wicri:Area/Pmc/Curation">001421</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Energy margins in dynamic object manipulation</title>
<author>
<name sortKey="Hasson, Christopher J" sort="Hasson, Christopher J" uniqKey="Hasson C" first="Christopher J." last="Hasson">Christopher J. Hasson</name>
<affiliation wicri:level="2">
<nlm:aff id="aff1">Department of Biology, Northeastern University, Boston, Massachusetts;</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Department of Biology, Northeastern University, Boston</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Shen, Tian" sort="Shen, Tian" uniqKey="Shen T" first="Tian" last="Shen">Tian Shen</name>
<affiliation wicri:level="2">
<nlm:aff id="aff2">Department of Physics, Northeastern University, Boston, Massachusetts;</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Department of Physics, Northeastern University, Boston</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Sternad, Dagmar" sort="Sternad, Dagmar" uniqKey="Sternad D" first="Dagmar" last="Sternad">Dagmar Sternad</name>
<affiliation wicri:level="2">
<nlm:aff id="aff1">Department of Biology, Northeastern University, Boston, Massachusetts;</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Department of Biology, Northeastern University, Boston</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="aff2">Department of Physics, Northeastern University, Boston, Massachusetts;</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Department of Physics, Northeastern University, Boston</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff wicri:cut="; and" id="aff3">Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Department of Electrical and Computer Engineering, Northeastern University, Boston</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="aff4">Center for Interdisciplinary Research in Complex Systems, Northeastern University, Boston, Massachusetts</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Center for Interdisciplinary Research in Complex Systems, Northeastern University, Boston</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of Neurophysiology</title>
<idno type="ISSN">0022-3077</idno>
<idno type="eISSN">1522-1598</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Many tasks require humans to manipulate dynamically complex objects and maintain appropriate safety margins, such as placing a cup of coffee on a coaster without spilling. This study examined how humans learn such safety margins and how they are shaped by task constraints and changing variability with improved skill. Eighteen subjects used a manipulandum to transport a shallow virtual cup containing a ball to a target without losing the ball. Half were to complete the cup transit in a comfortable target time of 2 s (a redundant task with infinitely many equivalent solutions), and the other half in minimum time (a nonredundant task with one explicit cost to optimize). The safety margin was defined as the ball energy relative to escape, i.e., as an energy margin. The first hypothesis, that subjects converge to a single strategy in the minimum-time task but choose different strategies in the less constrained target-time task, was not supported. Both groups developed individualized strategies with practice. The second hypothesis, that subjects decrease safety margins in the minimum-time task but increase them in the target-time task, was supported. The third hypothesis, that in both tasks subjects modulate energy margins according to their execution variability, was partially supported. In the target-time group, changes in energy margins correlated positively with changes in execution variability; in the minimum-time group, such a relation was observed only at the end of practice, not across practice. These results show that when learning a redundant object manipulation task, most subjects increase their safety margins and shape their movement strategies in accordance with their changing variability.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Neurophysiol</journal-id>
<journal-id journal-id-type="iso-abbrev">J. Neurophysiol</journal-id>
<journal-id journal-id-type="hwp">jn</journal-id>
<journal-id journal-id-type="pmc">jn</journal-id>
<journal-id journal-id-type="publisher-id">JN</journal-id>
<journal-title-group>
<journal-title>Journal of Neurophysiology</journal-title>
</journal-title-group>
<issn pub-type="ppub">0022-3077</issn>
<issn pub-type="epub">1522-1598</issn>
<publisher>
<publisher-name>American Physiological Society</publisher-name>
<publisher-loc>Bethesda, MD</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">22592302</article-id>
<article-id pub-id-type="pmc">3544966</article-id>
<article-id pub-id-type="publisher-id">JN-00019-2012</article-id>
<article-id pub-id-type="doi">10.1152/jn.00019.2012</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Articles</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Energy margins in dynamic object manipulation</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Hasson</surname>
<given-names>Christopher J.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Shen</surname>
<given-names>Tian</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sternad</surname>
<given-names>Dagmar</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
<xref ref-type="aff" rid="aff4">
<sup>4</sup>
</xref>
</contrib>
<aff id="aff1">
<sup>1</sup>
Department of Biology, Northeastern University, Boston, Massachusetts;</aff>
<aff id="aff2">
<sup>2</sup>
Department of Physics, Northeastern University, Boston, Massachusetts;</aff>
<aff id="aff3">
<sup>3</sup>
Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts; and</aff>
<aff id="aff4">
<sup>4</sup>
Center for Interdisciplinary Research in Complex Systems, Northeastern University, Boston, Massachusetts</aff>
</contrib-group>
<author-notes>
<corresp>Address for reprint requests and other correspondence: C. J. Hasson,
<addr-line>134 Mugar Life Science Bldg., Dept. of Biology, Northeastern Univ., 360 Huntington Ave., Boston, MA 02115</addr-line>
(e-mail:
<email>cjhasson@neu.edu</email>
).</corresp>
</author-notes>
<pub-date pub-type="ppub">
<day>1</day>
<month>9</month>
<year>2012</year>
</pub-date>
<pub-date pub-type="epub">
<day>16</day>
<month>5</month>
<year>2012</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>1</day>
<month>9</month>
<year>2013</year>
</pub-date>
<pmc-comment> PMC Release delay is 12 months and 0 days and was based on the . </pmc-comment>
<volume>108</volume>
<issue>5</issue>
<fpage>1349</fpage>
<lpage>1365</lpage>
<history>
<date date-type="received">
<day>6</day>
<month>1</month>
<year>2012</year>
</date>
<date date-type="accepted">
<day>9</day>
<month>5</month>
<year>2012</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2012 the American Physiological Society</copyright-statement>
<copyright-year>2012</copyright-year>
</permissions>
<self-uri xlink:title="pdf" xlink:type="simple" xlink:href="z9k01712001349.pdf"></self-uri>
<abstract>
<p>Many tasks require humans to manipulate dynamically complex objects and maintain appropriate safety margins, such as placing a cup of coffee on a coaster without spilling. This study examined how humans learn such safety margins and how they are shaped by task constraints and changing variability with improved skill. Eighteen subjects used a manipulandum to transport a shallow virtual cup containing a ball to a target without losing the ball. Half were to complete the cup transit in a comfortable target time of 2 s (a redundant task with infinitely many equivalent solutions), and the other half in minimum time (a nonredundant task with one explicit cost to optimize). The safety margin was defined as the ball energy relative to escape, i.e., as an energy margin. The first hypothesis, that subjects converge to a single strategy in the minimum-time task but choose different strategies in the less constrained target-time task, was not supported. Both groups developed individualized strategies with practice. The second hypothesis, that subjects decrease safety margins in the minimum-time task but increase them in the target-time task, was supported. The third hypothesis, that in both tasks subjects modulate energy margins according to their execution variability, was partially supported. In the target-time group, changes in energy margins correlated positively with changes in execution variability; in the minimum-time group, such a relation was observed only at the end of practice, not across practice. These results show that when learning a redundant object manipulation task, most subjects increase their safety margins and shape their movement strategies in accordance with their changing variability.</p>
</abstract>
<kwd-group>
<kwd>motor learning</kwd>
<kwd>motor control</kwd>
<kwd>safety margin</kwd>
<kwd>complex dynamics</kwd>
<kwd>energetic constraints</kwd>
</kwd-group>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Pmc/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001421 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd -nk 001421 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Pmc
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:3544966
   |texte=   Energy margins in dynamic object manipulation
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Curation/RBID.i   -Sk "pubmed:22592302" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024