Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A distributed, dynamic, parallel computational model: the role of noise in velocity storage

Identifieur interne : 001420 ( Pmc/Curation ); précédent : 001419; suivant : 001421

A distributed, dynamic, parallel computational model: the role of noise in velocity storage

Auteurs : Faisal Karmali ; Daniel M. Merfeld

Source :

RBID : PMC:3404789

Abstract

Networks of neurons perform complex calculations using distributed, parallel computation, including dynamic “real-time” calculations required for motion control. The brain must combine sensory signals to estimate the motion of body parts using imperfect information from noisy neurons. Models and experiments suggest that the brain sometimes optimally minimizes the influence of noise, although it remains unclear when and precisely how neurons perform such optimal computations. To investigate, we created a model of velocity storage based on a relatively new technique–“particle filtering”–that is both distributed and parallel. It extends existing observer and Kalman filter models of vestibular processing by simulating the observer model many times in parallel with noise added. During simulation, the variance of the particles defining the estimator state is used to compute the particle filter gain. We applied our model to estimate one-dimensional angular velocity during yaw rotation, which yielded estimates for the velocity storage time constant, afferent noise, and perceptual noise that matched experimental data. We also found that the velocity storage time constant was Bayesian optimal by comparing the estimate of our particle filter with the estimate of the Kalman filter, which is optimal. The particle filter demonstrated a reduced velocity storage time constant when afferent noise increased, which mimics what is known about aminoglycoside ablation of semicircular canal hair cells. This model helps bridge the gap between parallel distributed neural computation and systems-level behavioral responses like the vestibuloocular response and perception.


Url:
DOI: 10.1152/jn.00883.2011
PubMed: 22514288
PubMed Central: 3404789

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:3404789

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A distributed, dynamic, parallel computational model: the role of noise in velocity storage</title>
<author>
<name sortKey="Karmali, Faisal" sort="Karmali, Faisal" uniqKey="Karmali F" first="Faisal" last="Karmali">Faisal Karmali</name>
</author>
<author>
<name sortKey="Merfeld, Daniel M" sort="Merfeld, Daniel M" uniqKey="Merfeld D" first="Daniel M." last="Merfeld">Daniel M. Merfeld</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">22514288</idno>
<idno type="pmc">3404789</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404789</idno>
<idno type="RBID">PMC:3404789</idno>
<idno type="doi">10.1152/jn.00883.2011</idno>
<date when="2012">2012</date>
<idno type="wicri:Area/Pmc/Corpus">001420</idno>
<idno type="wicri:Area/Pmc/Curation">001420</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">A distributed, dynamic, parallel computational model: the role of noise in velocity storage</title>
<author>
<name sortKey="Karmali, Faisal" sort="Karmali, Faisal" uniqKey="Karmali F" first="Faisal" last="Karmali">Faisal Karmali</name>
</author>
<author>
<name sortKey="Merfeld, Daniel M" sort="Merfeld, Daniel M" uniqKey="Merfeld D" first="Daniel M." last="Merfeld">Daniel M. Merfeld</name>
</author>
</analytic>
<series>
<title level="j">Journal of Neurophysiology</title>
<idno type="ISSN">0022-3077</idno>
<idno type="eISSN">1522-1598</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Networks of neurons perform complex calculations using distributed, parallel computation, including dynamic “real-time” calculations required for motion control. The brain must combine sensory signals to estimate the motion of body parts using imperfect information from noisy neurons. Models and experiments suggest that the brain sometimes optimally minimizes the influence of noise, although it remains unclear when and precisely how neurons perform such optimal computations. To investigate, we created a model of velocity storage based on a relatively new technique–“particle filtering”–that is both distributed and parallel. It extends existing observer and Kalman filter models of vestibular processing by simulating the observer model many times in parallel with noise added. During simulation, the variance of the particles defining the estimator state is used to compute the particle filter gain. We applied our model to estimate one-dimensional angular velocity during yaw rotation, which yielded estimates for the velocity storage time constant, afferent noise, and perceptual noise that matched experimental data. We also found that the velocity storage time constant was Bayesian optimal by comparing the estimate of our particle filter with the estimate of the Kalman filter, which is optimal. The particle filter demonstrated a reduced velocity storage time constant when afferent noise increased, which mimics what is known about aminoglycoside ablation of semicircular canal hair cells. This model helps bridge the gap between parallel distributed neural computation and systems-level behavioral responses like the vestibuloocular response and perception.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Neurophysiol</journal-id>
<journal-id journal-id-type="iso-abbrev">J. Neurophysiol</journal-id>
<journal-id journal-id-type="hwp">jn</journal-id>
<journal-id journal-id-type="pmc">jn</journal-id>
<journal-id journal-id-type="publisher-id">JN</journal-id>
<journal-title-group>
<journal-title>Journal of Neurophysiology</journal-title>
</journal-title-group>
<issn pub-type="ppub">0022-3077</issn>
<issn pub-type="epub">1522-1598</issn>
<publisher>
<publisher-name>American Physiological Society</publisher-name>
<publisher-loc>Bethesda, MD</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">22514288</article-id>
<article-id pub-id-type="pmc">3404789</article-id>
<article-id pub-id-type="publisher-id">JN-00883-2011</article-id>
<article-id pub-id-type="doi">10.1152/jn.00883.2011</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Articles</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>A distributed, dynamic, parallel computational model: the role of noise in velocity storage</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Karmali</surname>
<given-names>Faisal</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Merfeld</surname>
<given-names>Daniel M.</given-names>
</name>
</contrib>
<aff>Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, and Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts</aff>
</contrib-group>
<author-notes>
<corresp>Address for reprint requests and other correspondence: F. Karmali,
<addr-line>Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA 02114</addr-line>
(e-mail:
<email>faisal_karmali@yahoo.com</email>
).</corresp>
</author-notes>
<pub-date pub-type="ppub">
<day>15</day>
<month>7</month>
<year>2012</year>
</pub-date>
<pub-date pub-type="epub">
<day>18</day>
<month>4</month>
<year>2012</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>15</day>
<month>7</month>
<year>2013</year>
</pub-date>
<pmc-comment> PMC Release delay is 12 months and 0 days and was based on the . </pmc-comment>
<volume>108</volume>
<issue>2</issue>
<fpage>390</fpage>
<lpage>405</lpage>
<history>
<date date-type="received">
<day>28</day>
<month>9</month>
<year>2011</year>
</date>
<date date-type="accepted">
<day>13</day>
<month>4</month>
<year>2012</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2012 the American Physiological Society</copyright-statement>
<copyright-year>2012</copyright-year>
</permissions>
<self-uri xlink:title="pdf" xlink:type="simple" xlink:href="z9k01412000390.pdf"></self-uri>
<abstract>
<p>Networks of neurons perform complex calculations using distributed, parallel computation, including dynamic “real-time” calculations required for motion control. The brain must combine sensory signals to estimate the motion of body parts using imperfect information from noisy neurons. Models and experiments suggest that the brain sometimes optimally minimizes the influence of noise, although it remains unclear when and precisely how neurons perform such optimal computations. To investigate, we created a model of velocity storage based on a relatively new technique–“particle filtering”–that is both distributed and parallel. It extends existing observer and Kalman filter models of vestibular processing by simulating the observer model many times in parallel with noise added. During simulation, the variance of the particles defining the estimator state is used to compute the particle filter gain. We applied our model to estimate one-dimensional angular velocity during yaw rotation, which yielded estimates for the velocity storage time constant, afferent noise, and perceptual noise that matched experimental data. We also found that the velocity storage time constant was Bayesian optimal by comparing the estimate of our particle filter with the estimate of the Kalman filter, which is optimal. The particle filter demonstrated a reduced velocity storage time constant when afferent noise increased, which mimics what is known about aminoglycoside ablation of semicircular canal hair cells. This model helps bridge the gap between parallel distributed neural computation and systems-level behavioral responses like the vestibuloocular response and perception.</p>
</abstract>
<kwd-group>
<kwd>sensory estimation</kwd>
<kwd>Bayesian</kwd>
<kwd>particle filter</kwd>
</kwd-group>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Pmc/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001420 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd -nk 001420 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Pmc
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:3404789
   |texte=   A distributed, dynamic, parallel computational model: the role of noise in velocity storage
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Curation/RBID.i   -Sk "pubmed:22514288" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024