Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Virtual reality environments for post-stroke arm rehabilitation

Identifieur interne : 000B58 ( Pmc/Curation ); précédent : 000B57; suivant : 000B59

Virtual reality environments for post-stroke arm rehabilitation

Auteurs : Sandeep Subramanian [Canada] ; Luiz A. Knaut [Canada] ; Christian Beaudoin [Canada] ; Bradford J. Mcfadyen [Canada] ; Anatol G. Feldman [Canada] ; Mindy F. Levin [Canada]

Source :

RBID : PMC:1920518

Abstract

Introduction

Optimal practice and feedback elements are essential requirements for maximal motor recovery in patients with motor deficits due to central nervous system lesions.

Methods

A virtual environment (VE) was created that incorporates practice and feedback elements necessary for maximal motor recovery. It permits varied and challenging practice in a motivating environment that provides salient feedback.

Results

The VE gives the user knowledge of results feedback about motor behavior and knowledge of performance feedback about the quality of pointing movements made in a virtual elevator. Movement distances are related to length of body segments.

Conclusion

We describe an immersive and interactive experimental protocol developed in a virtual reality environment using the CAREN system. The VE can be used as a training environment for the upper limb in patients with motor impairments.


Url:
DOI: 10.1186/1743-0003-4-20
PubMed: 17587441
PubMed Central: 1920518

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:1920518

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Virtual reality environments for post-stroke arm rehabilitation</title>
<author>
<name sortKey="Subramanian, Sandeep" sort="Subramanian, Sandeep" uniqKey="Subramanian S" first="Sandeep" last="Subramanian">Sandeep Subramanian</name>
<affiliation wicri:level="1">
<nlm:aff id="I1">School of Physical and Occupational Therapy, McGill University, 3654 Promenade Sir William Osler, Montreal, H3G 1Y5, Canada</nlm:aff>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>School of Physical and Occupational Therapy, McGill University, 3654 Promenade Sir William Osler, Montreal, H3G 1Y5</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="I3">CRIR Research Center, Jewish Rehabilitation Hospital, 3205 Alton Goldbloom Place, Laval, H7V 1R2, Canada</nlm:aff>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>CRIR Research Center, Jewish Rehabilitation Hospital, 3205 Alton Goldbloom Place, Laval, H7V 1R2</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Knaut, Luiz A" sort="Knaut, Luiz A" uniqKey="Knaut L" first="Luiz A" last="Knaut">Luiz A. Knaut</name>
<affiliation wicri:level="1">
<nlm:aff id="I2">School of Rehabilitation, University of Montreal, C.P. 6128, Succursale Centre-Ville Montreal, H3C 3J7, Canada</nlm:aff>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>School of Rehabilitation, University of Montreal, C.P. 6128, Succursale Centre-Ville Montreal, H3C 3J7</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="I3">CRIR Research Center, Jewish Rehabilitation Hospital, 3205 Alton Goldbloom Place, Laval, H7V 1R2, Canada</nlm:aff>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>CRIR Research Center, Jewish Rehabilitation Hospital, 3205 Alton Goldbloom Place, Laval, H7V 1R2</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Beaudoin, Christian" sort="Beaudoin, Christian" uniqKey="Beaudoin C" first="Christian" last="Beaudoin">Christian Beaudoin</name>
<affiliation wicri:level="1">
<nlm:aff id="I3">CRIR Research Center, Jewish Rehabilitation Hospital, 3205 Alton Goldbloom Place, Laval, H7V 1R2, Canada</nlm:aff>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>CRIR Research Center, Jewish Rehabilitation Hospital, 3205 Alton Goldbloom Place, Laval, H7V 1R2</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Mcfadyen, Bradford J" sort="Mcfadyen, Bradford J" uniqKey="Mcfadyen B" first="Bradford J" last="Mcfadyen">Bradford J. Mcfadyen</name>
<affiliation wicri:level="1">
<nlm:aff id="I4">Department of Rehabilitation, Laval University, Ste Foy, G1K 7P4, Canada</nlm:aff>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Rehabilitation, Laval University, Ste Foy, G1K 7P4</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Feldman, Anatol G" sort="Feldman, Anatol G" uniqKey="Feldman A" first="Anatol G" last="Feldman">Anatol G. Feldman</name>
<affiliation wicri:level="1">
<nlm:aff id="I3">CRIR Research Center, Jewish Rehabilitation Hospital, 3205 Alton Goldbloom Place, Laval, H7V 1R2, Canada</nlm:aff>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>CRIR Research Center, Jewish Rehabilitation Hospital, 3205 Alton Goldbloom Place, Laval, H7V 1R2</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="I5">Department of Physiology, University of Montreal, C.P. 6128, Succursale Centre-Ville Montreal, H3C 3J7, Canada</nlm:aff>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Physiology, University of Montreal, C.P. 6128, Succursale Centre-Ville Montreal, H3C 3J7</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Levin, Mindy F" sort="Levin, Mindy F" uniqKey="Levin M" first="Mindy F" last="Levin">Mindy F. Levin</name>
<affiliation wicri:level="1">
<nlm:aff id="I1">School of Physical and Occupational Therapy, McGill University, 3654 Promenade Sir William Osler, Montreal, H3G 1Y5, Canada</nlm:aff>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>School of Physical and Occupational Therapy, McGill University, 3654 Promenade Sir William Osler, Montreal, H3G 1Y5</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="I3">CRIR Research Center, Jewish Rehabilitation Hospital, 3205 Alton Goldbloom Place, Laval, H7V 1R2, Canada</nlm:aff>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>CRIR Research Center, Jewish Rehabilitation Hospital, 3205 Alton Goldbloom Place, Laval, H7V 1R2</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">17587441</idno>
<idno type="pmc">1920518</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1920518</idno>
<idno type="RBID">PMC:1920518</idno>
<idno type="doi">10.1186/1743-0003-4-20</idno>
<date when="2007">2007</date>
<idno type="wicri:Area/Pmc/Corpus">000B58</idno>
<idno type="wicri:Area/Pmc/Curation">000B58</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Virtual reality environments for post-stroke arm rehabilitation</title>
<author>
<name sortKey="Subramanian, Sandeep" sort="Subramanian, Sandeep" uniqKey="Subramanian S" first="Sandeep" last="Subramanian">Sandeep Subramanian</name>
<affiliation wicri:level="1">
<nlm:aff id="I1">School of Physical and Occupational Therapy, McGill University, 3654 Promenade Sir William Osler, Montreal, H3G 1Y5, Canada</nlm:aff>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>School of Physical and Occupational Therapy, McGill University, 3654 Promenade Sir William Osler, Montreal, H3G 1Y5</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="I3">CRIR Research Center, Jewish Rehabilitation Hospital, 3205 Alton Goldbloom Place, Laval, H7V 1R2, Canada</nlm:aff>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>CRIR Research Center, Jewish Rehabilitation Hospital, 3205 Alton Goldbloom Place, Laval, H7V 1R2</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Knaut, Luiz A" sort="Knaut, Luiz A" uniqKey="Knaut L" first="Luiz A" last="Knaut">Luiz A. Knaut</name>
<affiliation wicri:level="1">
<nlm:aff id="I2">School of Rehabilitation, University of Montreal, C.P. 6128, Succursale Centre-Ville Montreal, H3C 3J7, Canada</nlm:aff>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>School of Rehabilitation, University of Montreal, C.P. 6128, Succursale Centre-Ville Montreal, H3C 3J7</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="I3">CRIR Research Center, Jewish Rehabilitation Hospital, 3205 Alton Goldbloom Place, Laval, H7V 1R2, Canada</nlm:aff>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>CRIR Research Center, Jewish Rehabilitation Hospital, 3205 Alton Goldbloom Place, Laval, H7V 1R2</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Beaudoin, Christian" sort="Beaudoin, Christian" uniqKey="Beaudoin C" first="Christian" last="Beaudoin">Christian Beaudoin</name>
<affiliation wicri:level="1">
<nlm:aff id="I3">CRIR Research Center, Jewish Rehabilitation Hospital, 3205 Alton Goldbloom Place, Laval, H7V 1R2, Canada</nlm:aff>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>CRIR Research Center, Jewish Rehabilitation Hospital, 3205 Alton Goldbloom Place, Laval, H7V 1R2</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Mcfadyen, Bradford J" sort="Mcfadyen, Bradford J" uniqKey="Mcfadyen B" first="Bradford J" last="Mcfadyen">Bradford J. Mcfadyen</name>
<affiliation wicri:level="1">
<nlm:aff id="I4">Department of Rehabilitation, Laval University, Ste Foy, G1K 7P4, Canada</nlm:aff>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Rehabilitation, Laval University, Ste Foy, G1K 7P4</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Feldman, Anatol G" sort="Feldman, Anatol G" uniqKey="Feldman A" first="Anatol G" last="Feldman">Anatol G. Feldman</name>
<affiliation wicri:level="1">
<nlm:aff id="I3">CRIR Research Center, Jewish Rehabilitation Hospital, 3205 Alton Goldbloom Place, Laval, H7V 1R2, Canada</nlm:aff>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>CRIR Research Center, Jewish Rehabilitation Hospital, 3205 Alton Goldbloom Place, Laval, H7V 1R2</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="I5">Department of Physiology, University of Montreal, C.P. 6128, Succursale Centre-Ville Montreal, H3C 3J7, Canada</nlm:aff>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Physiology, University of Montreal, C.P. 6128, Succursale Centre-Ville Montreal, H3C 3J7</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Levin, Mindy F" sort="Levin, Mindy F" uniqKey="Levin M" first="Mindy F" last="Levin">Mindy F. Levin</name>
<affiliation wicri:level="1">
<nlm:aff id="I1">School of Physical and Occupational Therapy, McGill University, 3654 Promenade Sir William Osler, Montreal, H3G 1Y5, Canada</nlm:aff>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>School of Physical and Occupational Therapy, McGill University, 3654 Promenade Sir William Osler, Montreal, H3G 1Y5</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="I3">CRIR Research Center, Jewish Rehabilitation Hospital, 3205 Alton Goldbloom Place, Laval, H7V 1R2, Canada</nlm:aff>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>CRIR Research Center, Jewish Rehabilitation Hospital, 3205 Alton Goldbloom Place, Laval, H7V 1R2</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of NeuroEngineering and Rehabilitation</title>
<idno type="eISSN">1743-0003</idno>
<imprint>
<date when="2007">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec>
<title>Introduction</title>
<p>Optimal practice and feedback elements are essential requirements for maximal motor recovery in patients with motor deficits due to central nervous system lesions.</p>
</sec>
<sec sec-type="methods">
<title>Methods</title>
<p>A virtual environment (VE) was created that incorporates practice and feedback elements necessary for maximal motor recovery. It permits varied and challenging practice in a motivating environment that provides salient feedback.</p>
</sec>
<sec>
<title>Results</title>
<p>The VE gives the user knowledge of results feedback about motor behavior and knowledge of performance feedback about the quality of pointing movements made in a virtual elevator. Movement distances are related to length of body segments.</p>
</sec>
<sec>
<title>Conclusion</title>
<p>We describe an immersive and interactive experimental protocol developed in a virtual reality environment using the CAREN system. The VE can be used as a training environment for the upper limb in patients with motor impairments.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Neuroengineering Rehabil</journal-id>
<journal-title>Journal of NeuroEngineering and Rehabilitation</journal-title>
<issn pub-type="epub">1743-0003</issn>
<publisher>
<publisher-name>BioMed Central</publisher-name>
<publisher-loc>London</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">17587441</article-id>
<article-id pub-id-type="pmc">1920518</article-id>
<article-id pub-id-type="publisher-id">1743-0003-4-20</article-id>
<article-id pub-id-type="doi">10.1186/1743-0003-4-20</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Methodology</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Virtual reality environments for post-stroke arm rehabilitation</article-title>
</title-group>
<contrib-group>
<contrib id="A1" contrib-type="author">
<name>
<surname>Subramanian</surname>
<given-names>Sandeep</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<xref ref-type="aff" rid="I3">3</xref>
<email>sandeep.subramanian@mail.mcgill.ca</email>
</contrib>
<contrib id="A2" contrib-type="author">
<name>
<surname>Knaut</surname>
<given-names>Luiz A</given-names>
</name>
<xref ref-type="aff" rid="I2">2</xref>
<xref ref-type="aff" rid="I3">3</xref>
<email>betoknaut@hotmail.com</email>
</contrib>
<contrib id="A3" contrib-type="author">
<name>
<surname>Beaudoin</surname>
<given-names>Christian</given-names>
</name>
<xref ref-type="aff" rid="I3">3</xref>
<email>christ_beaudoin@hotmail.com</email>
</contrib>
<contrib id="A4" contrib-type="author">
<name>
<surname>McFadyen</surname>
<given-names>Bradford J</given-names>
</name>
<xref ref-type="aff" rid="I4">4</xref>
<email>brad.mcfadyen@rea.ulaval.ca</email>
</contrib>
<contrib id="A5" contrib-type="author">
<name>
<surname>Feldman</surname>
<given-names>Anatol G</given-names>
</name>
<xref ref-type="aff" rid="I3">3</xref>
<xref ref-type="aff" rid="I5">5</xref>
<email>feldman@med.umontreal.ca</email>
</contrib>
<contrib id="A6" corresp="yes" contrib-type="author">
<name>
<surname>Levin</surname>
<given-names>Mindy F</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<xref ref-type="aff" rid="I3">3</xref>
<email>mindy.levin@mcgill.ca</email>
</contrib>
</contrib-group>
<aff id="I1">
<label>1</label>
School of Physical and Occupational Therapy, McGill University, 3654 Promenade Sir William Osler, Montreal, H3G 1Y5, Canada</aff>
<aff id="I2">
<label>2</label>
School of Rehabilitation, University of Montreal, C.P. 6128, Succursale Centre-Ville Montreal, H3C 3J7, Canada</aff>
<aff id="I3">
<label>3</label>
CRIR Research Center, Jewish Rehabilitation Hospital, 3205 Alton Goldbloom Place, Laval, H7V 1R2, Canada</aff>
<aff id="I4">
<label>4</label>
Department of Rehabilitation, Laval University, Ste Foy, G1K 7P4, Canada</aff>
<aff id="I5">
<label>5</label>
Department of Physiology, University of Montreal, C.P. 6128, Succursale Centre-Ville Montreal, H3C 3J7, Canada</aff>
<pub-date pub-type="collection">
<year>2007</year>
</pub-date>
<pub-date pub-type="epub">
<day>22</day>
<month>6</month>
<year>2007</year>
</pub-date>
<volume>4</volume>
<fpage>20</fpage>
<lpage>20</lpage>
<ext-link ext-link-type="uri" xlink:href="http://www.jneuroengrehab.com/content/4/1/20"></ext-link>
<history>
<date date-type="received">
<day>13</day>
<month>1</month>
<year>2007</year>
</date>
<date date-type="accepted">
<day>22</day>
<month>6</month>
<year>2007</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2007 Subramanian et al; licensee BioMed Central Ltd.</copyright-statement>
<copyright-year>2007</copyright-year>
<copyright-holder>Subramanian et al; licensee BioMed Central Ltd.</copyright-holder>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/2.0">
<p>This is an Open Access article distributed under the terms of the Creative Commons Attribution License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/2.0"></ext-link>
), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</p>
<pmc-comment> Subramanian Sandeep sandeep.subramanian@mail.mcgill.ca Virtual reality environments for post-stroke arm rehabilitation 2007Journal of NeuroEngineering and Rehabilitation 4(1): 20-. (2007)1743-0003(2007)4:1<20>urn:ISSN:1743-0003</pmc-comment>
</license>
</permissions>
<abstract>
<sec>
<title>Introduction</title>
<p>Optimal practice and feedback elements are essential requirements for maximal motor recovery in patients with motor deficits due to central nervous system lesions.</p>
</sec>
<sec sec-type="methods">
<title>Methods</title>
<p>A virtual environment (VE) was created that incorporates practice and feedback elements necessary for maximal motor recovery. It permits varied and challenging practice in a motivating environment that provides salient feedback.</p>
</sec>
<sec>
<title>Results</title>
<p>The VE gives the user knowledge of results feedback about motor behavior and knowledge of performance feedback about the quality of pointing movements made in a virtual elevator. Movement distances are related to length of body segments.</p>
</sec>
<sec>
<title>Conclusion</title>
<p>We describe an immersive and interactive experimental protocol developed in a virtual reality environment using the CAREN system. The VE can be used as a training environment for the upper limb in patients with motor impairments.</p>
</sec>
</abstract>
</article-meta>
</front>
<body>
<sec>
<title>Background</title>
<p>Stroke, third leading cause of death in Western countries, contributes significantly to disabilities and handicaps. Up to 85% of patients have an initial arm sensorimotor dysfunction with impairments persisting for more than 3 months [
<xref ref-type="bibr" rid="B1">1</xref>
,
<xref ref-type="bibr" rid="B2">2</xref>
]. Several principals guide motor recovery. In animal stroke models, experience-dependent plasticity is driven through salient, repetitive and intensive practice [
<xref ref-type="bibr" rid="B3">3</xref>
,
<xref ref-type="bibr" rid="B4">4</xref>
]. However, in humans, unguided practice of reaching without feedback about movement patterns used, even if enhanced or intensive, may reinforce compensatory movement strategies instead of encouraging recovery of pre-morbid movement patterns [
<xref ref-type="bibr" rid="B5">5</xref>
,
<xref ref-type="bibr" rid="B6">6</xref>
]. While desirable for some patients with severe impairment and poor prognosis, for others, compensation may limit the potential for recovery [
<xref ref-type="bibr" rid="B7">7</xref>
-
<xref ref-type="bibr" rid="B10">10</xref>
].</p>
<p>Levin and colleagues have shown that recovery of pre-morbid movement patterns after repetitive reaching training is facilitated when either compensatory trunk movements were restricted [
<xref ref-type="bibr" rid="B11">11</xref>
] or information about missing motor elements was provided [
<xref ref-type="bibr" rid="B6">6</xref>
,
<xref ref-type="bibr" rid="B12">12</xref>
]. This suggests that more salient, task-relevant feedback may result in greater motor gains after stroke. Virtual reality (VR) technologies provide adaptable media to create environments for assessment and training of arm motor deficits using enhanced feedback [
<xref ref-type="bibr" rid="B13">13</xref>
]. This paper describes a virtual environment (VE) that incorporates practice and feedback elements necessary for maximal motor recovery. It introduces: 1)
<italic>originality and motivation </italic>
to the task; 2)
<italic>varied and challenging practice </italic>
of high-level motor control elements, and 3)
<italic>optimal, multimodal feedback </italic>
about movement performance and outcome.</p>
</sec>
<sec sec-type="methods">
<title>Methods</title>
<p>A VE simulating elevator buttons was developed to practice pointing movement (Fig.
<xref ref-type="fig" rid="F1">1</xref>
). Target placement challenges individuals to reach into different workspace areas and motivation is provided as feedback about motor performance. Peripherals are connected to a PC (Dual Xeon 3.06 GHz, 2 GB RAM, 160 GB hard drive) running a CAREN (Computer Assisted Rehabilitation Environment; Motek BV) platform providing 'real-time' integration of 3D hand, arm and body position data with the VE. The system includes a head-mounted display (HMD, Kaiser XL50, resolution 1024 × 768, frequency 60 Hz), an Optotrak Motion Capture System (Northern Digital), a CyberGlove
<sup>® </sup>
(Immersion), and a dual-head Nvidia Quatro FX3000 graphics card (70 Hz) providing high-speed stereoscopic representation of the environment created on SoftImage XSI.</p>
<fig position="float" id="F1">
<label>Figure 1</label>
<caption>
<p>A subject performing the experiment (left) beside the virtual reality system (right).</p>
</caption>
<graphic xlink:href="1743-0003-4-20-1"></graphic>
</fig>
<p>The 3D visual scene displayed through the HMD promotes a sense of presence in the VE [
<xref ref-type="bibr" rid="B14">14</xref>
]. To simulate stereovision, two images of the same environment are generated in each HMD camera position with an offset corresponding to inter-ocular distance. The Optotrak system tracks movement in the virtual space via infrared emitting diodes (IREDs) placed on body segments. Optotrak provides higher sampling rates and shorter latencies for acquiring positional data compared to other systems, e.g., electromagnetic. Longer latencies may be associated with cybersickness. Head and hand position are determined by tracking rigid bodies on the HMD and CyberGlove respectively.</p>
<p>Presence is enhanced with the 22-sensor CyberGlove, permitting the user to see a realistic reproduction of his/her hand in the VE. Haptic feedback is not provided (i.e., force feedback on button depression). Hand position from Optotrak tracking is relayed to CyberGlove software, which calculates palm and finger position/orientation. Final fingertip position determines target acquisition with accuracy adjusted to the participant's ability.</p>
<sec>
<title>Experimental Setup</title>
<p>The system permits repetitive training of goal-directed arm movements to improve arm motor function. In the current setup, elevator buttons (targets), displayed in 2 rows of 3, 6 cm × 6 cm targets (Fig.
<xref ref-type="fig" rid="F2">2</xref>
), are arranged on a virtual wall in the ipsilateral and contralateral arm workspace requiring different combinations of arm joint movements for successful pointing. Center-to-center distance between adjacent targets is 26 cm (Fig.
<xref ref-type="fig" rid="F2">2A</xref>
). Targets are displayed at a standardized distance equal to the participant's arm length (Fig.
<xref ref-type="fig" rid="F2">2B</xref>
) to facilitate collision detection. Middle targets are aligned with the sternum, with the mid-point between rows at shoulder height.</p>
<fig position="float" id="F2">
<label>Figure 2</label>
<caption>
<p>Target arrangement on coronal (A) and transversal planes (B).</p>
</caption>
<graphic xlink:href="1743-0003-4-20-2"></graphic>
</fig>
<p>A global system axis is calibrated using a grid of physical targets having the exact size and relative position as those in the VE, with its origin at the center of the target grid (Fig.
<xref ref-type="fig" rid="F3">3</xref>
). Extreme right and left target distances (1,4,3,6) are corrected for arm's length by offsetting target depth along the sagittal plane (Fig.
<xref ref-type="fig" rid="F4">4</xref>
) so that they can be reached without trunk displacement.</p>
<fig position="float" id="F3">
<label>Figure 3</label>
<caption>
<p>Physical target grid for virtual environment calibration.</p>
</caption>
<graphic xlink:href="1743-0003-4-20-3"></graphic>
</fig>
<fig position="float" id="F4">
<label>Figure 4</label>
<caption>
<p>Compensation of target size along the sagittal direction taking into account the arc of the arm.</p>
</caption>
<graphic xlink:href="1743-0003-4-20-4"></graphic>
</fig>
<p>Based on findings that improvement in movement time of a reaching task occurred after 25–35 trials in patients with mild-to-moderate hemiparesis [
<xref ref-type="bibr" rid="B7">7</xref>
], the initial training protocol includes 72 trials. This represents twice the number needed for motor learning and is considered intensive. Trials are equally and randomly distributed across targets. Twelve trials per target are recorded, 3 blocks of 24 movements each, separated by rest periods. Recording time and intertrial intervals are adjusted according to subject ability. Task difficulty is progressed by manipulating movement speed and precision requirements.</p>
</sec>
<sec>
<title>Feedback</title>
<p>Effects of different types of feedback on motor learning can be studied. Feedback is provided as knowledge of results (KR) and performance (KP). Movement speed and precision (KR) and motor performance (joint movement patterns, KP) auditory and visual feedback is provided to enhance motor learning [
<xref ref-type="bibr" rid="B6">6</xref>
,
<xref ref-type="bibr" rid="B12">12</xref>
]. Subjects are verbally cued to reach to a target as well as by a change in target color (yellow, Fig.
<xref ref-type="fig" rid="F5">5A,B</xref>
). Subjects receive positive feedback (KR) in the form of a 'ping' sound and change in target color (green) when the movement is both within the stipulated time and area. Negative feedback (buzzer sound) is provided if the movement is not rapid or precise enough. Finally, the subject receives KP in the form of a 'whoosh' sound and red colored target if trunk displacement exceeds an adjustable default value of 5 cm. According to previous studies, non-disabled subjects use up to 1.7 ± 1.6 cm of trunk movement to reach similarly placed targets [
<xref ref-type="bibr" rid="B15">15</xref>
].</p>
<fig position="float" id="F5">
<label>Figure 5</label>
<caption>
<p>Elevator scenes: A. Spheres represent marker positions on the subject's arm and trunk and the cube in front of Target 1 is the offset added to detect collision between the fingertip and the target. B. The virtual environment as it appears to the subject in the head-mounted display. The subject is cued to reach Target 3. The participant's score is indicated on the top right of each panel.</p>
</caption>
<graphic xlink:href="1743-0003-4-20-5"></graphic>
</fig>
</sec>
</sec>
<sec>
<title>Preliminary Results</title>
<p>We compared motor performance and movement patterns made to the 6 targets between the VE and PE (Fig.
<xref ref-type="fig" rid="F6">6</xref>
) in 15 patients with hemiparesis and 8 age-matched non-disabled controls. Position data (x, y, z) from the finger, arm and trunk were interpolated and filtered and trajectories were calculated. Kinematics measured were endpoint velocity, pointing error and trajectory smoothness. Peak endpoint velocity was determined from magnitude of the tangential velocity obtained by differentiation of index marker positional data. Endpoint error was calculated as the root-mean-square error of endpoint position with respect to the target. Trajectory smoothness was computed as the curvature index defined as ratio of actual endpoint path length to a straight line joining starting and end positions such that a straight line has an index of 1 and a semicircle has an index of 1.57 [
<xref ref-type="bibr" rid="B16">16</xref>
].</p>
<fig position="float" id="F6">
<label>Figure 6</label>
<caption>
<p>Endpoint trajectories of the pointing movement performed in the physical environment (thin lines, red) and the virtual environment (thick lines, black) by a patient with hemiparesis (A) and a non-disabled subject (B).</p>
</caption>
<graphic xlink:href="1743-0003-4-20-6"></graphic>
</fig>
<p>Fig.
<xref ref-type="fig" rid="F6">6</xref>
shows mean endpoint trajectories for one patient with moderate hemiparesis (A) and one non-disabled subject (B) reaching to the 3 lower targets in both environments. The non-disabled subject made movements twice as fast as the patient. In both subjects, movement speed was lower in the VE. Endpoint precision was comparable, ranging from 257–356 mm in the PE and 275–370 mm in the VE for the non-disabled subject and from 263–363 mm in the PE and 275–379 mm in the VE for the patient. Movements tended to be less precise and more curved in VE compared to the PE (curvature index: non-disabled-PE: 1.02–1.03; VE: 1.04–1.05; patient-PE: 1.15–1.22; VE: 1.16–1.32). Results suggest some differences in movements performance in a VE compared to a PE of similar physical dimensions. From a usability standpoint, only 2 patients of those screened could not use the HMD. Of those who participated, all reported that the VE was more enjoyable and motivating than the PE and it encouraged them to do more practice.</p>
</sec>
<sec>
<title>Conclusion</title>
<p>A VR system was developed to study effects of enhanced feedback on motor learning and arm recovery in patients with neurological dysfunction. Effects will be contrasted with those from practice in similarly constructed PEs using different types of feedback.</p>
</sec>
</body>
<back>
<ack>
<sec>
<title>Acknowledgements</title>
<p>Supported by Canadian Institutes of Health Research (CIHR) and Canadian Foundation for Innovation (CFI). Thanks to Eric Johnstone and Christian Beaudoin for construction of the PE and VE respectively and to participants of preliminary experiments. Consent obtained from LAK for Fig.
<xref ref-type="fig" rid="F1">1</xref>
.</p>
</sec>
</ack>
<ref-list>
<ref id="B1">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carod-Artal</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Egido</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Gonzalez</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Varela de Seijas</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Quality of life among stroke survivors evaluated 1 year after stroke: experience of a stroke unit</article-title>
<source>Stroke</source>
<year>2000</year>
<volume>31</volume>
<fpage>2995</fpage>
<lpage>3000</lpage>
<pub-id pub-id-type="pmid">11108762</pub-id>
</citation>
</ref>
<ref id="B2">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Olsen</surname>
<given-names>TS</given-names>
</name>
</person-group>
<article-title>Arm and leg paresis as outcome predictors in stroke rehabilitation</article-title>
<source>Stroke</source>
<year>1990</year>
<volume>21</volume>
<fpage>247</fpage>
<lpage>251</lpage>
<pub-id pub-id-type="pmid">2305400</pub-id>
</citation>
</ref>
<ref id="B3">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Teasell</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Bayona</surname>
<given-names>NA</given-names>
</name>
<name>
<surname>Bitensky</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Plasticity and reorganization of the brain post stroke</article-title>
<source>Top Stroke Rehabil</source>
<year>2005</year>
<volume>12</volume>
<fpage>11</fpage>
<lpage>26</lpage>
<pub-id pub-id-type="pmid">16110424</pub-id>
</citation>
</ref>
<ref id="B4">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nudo</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Milliken</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys</article-title>
<source>J Neurophysiol</source>
<year>1996</year>
<volume>75</volume>
<fpage>2144</fpage>
<lpage>2149</lpage>
<pub-id pub-id-type="pmid">8734610</pub-id>
</citation>
</ref>
<ref id="B5">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cirstea</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Levin</surname>
<given-names>MF</given-names>
</name>
</person-group>
<article-title>Compensatory strategies for reaching in stroke</article-title>
<source>Brain</source>
<year>2000</year>
<volume>123</volume>
<fpage>940</fpage>
<lpage>953</lpage>
<pub-id pub-id-type="pmid">10775539</pub-id>
<pub-id pub-id-type="doi">10.1093/brain/123.5.940</pub-id>
</citation>
</ref>
<ref id="B6">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cirstea</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Ptito</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Levin</surname>
<given-names>MF</given-names>
</name>
</person-group>
<article-title>Effect of type of feedback and cognitive impairment in arm motor skill re-acquisition in stroke</article-title>
<source>Stroke</source>
<year>2006</year>
<volume>37</volume>
<fpage>1237</fpage>
<lpage>1242</lpage>
<pub-id pub-id-type="pmid">16601218</pub-id>
<pub-id pub-id-type="doi">10.1161/01.STR.0000217417.89347.63</pub-id>
</citation>
</ref>
<ref id="B7">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Allred</surname>
<given-names>RP</given-names>
</name>
<name>
<surname>Maldonado</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Hsu</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>TA</given-names>
</name>
</person-group>
<article-title>Training the "less-affected" forelimb after unilateral cortical infarcts interferes with functional recovery of the impaired forelimb in rats</article-title>
<source>Restor Neurol Neurosci</source>
<year>2005</year>
<volume>23</volume>
<fpage>297</fpage>
<lpage>302</lpage>
<pub-id pub-id-type="pmid">16477091</pub-id>
</citation>
</ref>
<ref id="B8">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Taub</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>NE</given-names>
</name>
<name>
<surname>Novack</surname>
<given-names>TA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Technique to improve chronic motor deficit after stroke</article-title>
<source>Arch Phys Med Rehab</source>
<year>1993</year>
<volume>74</volume>
<fpage>347</fpage>
<lpage>354</lpage>
</citation>
</ref>
<ref id="B9">
<citation citation-type="book">
<person-group person-group-type="author">
<name>
<surname>Ada</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Canning</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Carr</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Kilbreath</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Shepherd</surname>
<given-names>RB</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Bennett KMB, Castiello U</surname>
</name>
</person-group>
<article-title>Task specific training of reaching and manipulation</article-title>
<source>Insights into Grasp and Reach Movements</source>
<year>1994</year>
<publisher-name>Cambridge: Elsevier</publisher-name>
<fpage>239</fpage>
<lpage>265</lpage>
</citation>
</ref>
<ref id="B10">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Levin</surname>
<given-names>MF</given-names>
</name>
</person-group>
<article-title>Should stereotypic movement synergies seen in hemiparetic patients be considered adaptive?</article-title>
<source>Behav Brain Sci</source>
<year>1997</year>
<volume>19</volume>
<fpage>79</fpage>
<lpage>80</lpage>
</citation>
</ref>
<ref id="B11">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Michaelsen</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Dannenbaum</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Levin</surname>
<given-names>MF</given-names>
</name>
</person-group>
<article-title>Task-specific training with trunk restraint on arm recovery in stroke: randomized control trial</article-title>
<source>Stroke</source>
<year>2006</year>
<volume>37</volume>
<fpage>186</fpage>
<lpage>192</lpage>
<pub-id pub-id-type="pmid">16339469</pub-id>
<pub-id pub-id-type="doi">10.1161/01.STR.0000196940.20446.c9</pub-id>
</citation>
</ref>
<ref id="B12">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cirstea</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Levin</surname>
<given-names>MF</given-names>
</name>
</person-group>
<article-title>Improvement in arm movement patterns and endpoint control depends on type of feedback during practice in stroke survivors</article-title>
<source>Neurorehabil Neural Repair</source>
<year>2007</year>
<volume>21</volume>
<fpage>1</fpage>
<lpage>14</lpage>
</citation>
</ref>
<ref id="B13">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stanton</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Foreman</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>PN</given-names>
</name>
</person-group>
<article-title>Uses of virtual reality in clinical training: developing the spatial skills of children with mobility impairments</article-title>
<source>Stud Health Technol Informatics</source>
<year>1998</year>
<volume>58</volume>
<fpage>219</fpage>
<lpage>232</lpage>
</citation>
</ref>
<ref id="B14">
<citation citation-type="other">
<person-group person-group-type="author">
<name>
<surname>McNeill</surname>
<given-names>MDJ</given-names>
</name>
<name>
<surname>Pokluda</surname>
<given-names>L</given-names>
</name>
<name>
<surname>McDonough</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Crosbie</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Immersive virtual reality for upper limb rehabilitation following stroke</article-title>
<source>Proceedings of IEEE International Conference on Systems, Man and Cybernetics</source>
<year>2004</year>
</citation>
</ref>
<ref id="B15">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Levin</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Cirstea</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Michaelsen</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Roby-Brami</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Use of trunk for reaching targets placed within and beyond the reach in adult hemiparesis</article-title>
<source>Exp Brain Res</source>
<year>2002</year>
<volume>143</volume>
<fpage>171</fpage>
<lpage>180</lpage>
<pub-id pub-id-type="pmid">11880893</pub-id>
<pub-id pub-id-type="doi">10.1007/s00221-001-0976-6</pub-id>
</citation>
</ref>
<ref id="B16">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Archambault</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Pigeon</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Feldman</surname>
<given-names>AG</given-names>
</name>
<name>
<surname>Levin</surname>
<given-names>MF</given-names>
</name>
</person-group>
<article-title>Recruitment and sequencing of different degrees of freedom during pointing movements involving the trunk in healthy and hemiparetic subjects</article-title>
<source>Exp Brain Res</source>
<year>1999</year>
<volume>126</volume>
<fpage>55</fpage>
<lpage>67</lpage>
<pub-id pub-id-type="pmid">10333007</pub-id>
<pub-id pub-id-type="doi">10.1007/s002210050716</pub-id>
</citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Pmc/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B58 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd -nk 000B58 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Pmc
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:1920518
   |texte=   Virtual reality environments for post-stroke arm rehabilitation
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Curation/RBID.i   -Sk "pubmed:17587441" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024