Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Virtual reality application for direct-drive robot with force feedback

Identifieur interne : 001184 ( PascalFrancis/Corpus ); précédent : 001183; suivant : 001185

Virtual reality application for direct-drive robot with force feedback

Auteurs : M.-G. Her ; K.-S. Hsu ; T.-S. Lan

Source :

RBID : Pascal:03-0203395

Descripteurs français

English descriptors

Abstract

Most of the current virtual reality systems use geometric models and non-sensing robots for simulation, which cannot provide an insight into the real operation of the task. In this paper, we present a new type of telerobotics based on the haptic virtual reality (VR) approach for simulating hitting a ball with force feedback attached to a human arm. The main components of the approach include a user interface, simulation, and a robot control scheme. The user interface is implemented as a combination of a virtual paddle and a graphic interface. The human operator manipulates a direct-drive type handler in the simulated environment, and the environment is simulated by the haptic virtual system that enables the operator to feel the actual force feedback from the virtual environment just as she/he would from the real environment. The haptic virtual system integrates the dynamics of the direct-drive active paddle and the virtual environment. whereas the paddle actuator consists of the dynamics of the paddle and the operator on the physical side. The control scheme employs a dynamic controller that is designed considering the force from the operator imposed on the paddle, and the force from the environment imposed on the paddle and feedback to the human arm. Experiments in the virtual environment on hitting a virtual ball system are used to validate the theoretical developments.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0268-3768
A03   1    @0 Int. j. adv. manuf. technol.
A05       @2 21
A06       @2 1
A08 01  1  ENG  @1 Virtual reality application for direct-drive robot with force feedback
A11 01  1    @1 HER (M.-G.)
A11 02  1    @1 HSU (K.-S.)
A11 03  1    @1 LAN (T.-S.)
A14 01      @1 Department of Mechanical Engineering, Tatung University @2 Taipei @3 TWN @Z 1 aut.
A14 02      @1 Department of Automation Engineering, Kao Yuan Institute of Technology @2 Lu-Chu Hsiang, Kaohsiung @3 TWN @Z 2 aut.
A14 03      @1 Department of Mechanical Engineering, De Lin Institute of Technology @2 Tuchen @3 TWN @Z 3 aut.
A20       @1 66-71
A21       @1 2003
A23 01      @0 ENG
A43 01      @1 INIST @2 22178 @5 354000110770890080
A44       @0 0000 @1 © 2003 INIST-CNRS. All rights reserved.
A45       @0 13 ref.
A47 01  1    @0 03-0203395
A60       @1 P
A61       @0 A
A64 01  1    @0 International journal, advanced manufacturing technology
A66 01      @0 GBR
C01 01    ENG  @0 Most of the current virtual reality systems use geometric models and non-sensing robots for simulation, which cannot provide an insight into the real operation of the task. In this paper, we present a new type of telerobotics based on the haptic virtual reality (VR) approach for simulating hitting a ball with force feedback attached to a human arm. The main components of the approach include a user interface, simulation, and a robot control scheme. The user interface is implemented as a combination of a virtual paddle and a graphic interface. The human operator manipulates a direct-drive type handler in the simulated environment, and the environment is simulated by the haptic virtual system that enables the operator to feel the actual force feedback from the virtual environment just as she/he would from the real environment. The haptic virtual system integrates the dynamics of the direct-drive active paddle and the virtual environment. whereas the paddle actuator consists of the dynamics of the paddle and the operator on the physical side. The control scheme employs a dynamic controller that is designed considering the force from the operator imposed on the paddle, and the force from the environment imposed on the paddle and feedback to the human arm. Experiments in the virtual environment on hitting a virtual ball system are used to validate the theoretical developments.
C02 01  X    @0 001D02D11
C02 02  X    @0 001D02B04
C03 01  X  FRE  @0 Robotique @5 03
C03 01  X  ENG  @0 Robotics @5 03
C03 01  X  SPA  @0 Robótica @5 03
C03 02  X  FRE  @0 Téléopération @5 04
C03 02  X  ENG  @0 Remote operation @5 04
C03 02  X  SPA  @0 Teleacción @5 04
C03 03  X  FRE  @0 Interface utilisateur @5 05
C03 03  X  ENG  @0 User interface @5 05
C03 03  X  SPA  @0 Interfase usuario @5 05
C03 04  X  FRE  @0 Interface graphique @5 06
C03 04  X  ENG  @0 Graphical interface @5 06
C03 04  X  SPA  @0 Interfaz grafica @5 06
C03 05  X  FRE  @0 Sensibilité tactile @5 08
C03 05  X  ENG  @0 Tactile sensitivity @5 08
C03 05  X  SPA  @0 Sensibilidad tactil @5 08
C03 06  X  FRE  @0 Réalité virtuelle @5 10
C03 06  X  ENG  @0 Virtual reality @5 10
C03 06  X  SPA  @0 Realidad virtual @5 10
C03 07  X  FRE  @0 Opérateur humain @5 13
C03 07  X  ENG  @0 Human operator @5 13
C03 07  X  SPA  @0 Operador humano @5 13
C03 08  X  FRE  @0 Rétroaction @5 14
C03 08  X  ENG  @0 Feedback regulation @5 14
C03 08  X  SPA  @0 Retroacción @5 14
C03 09  X  FRE  @0 Infographie @5 17
C03 09  X  ENG  @0 Computer graphics @5 17
C03 09  X  SPA  @0 Gráfico computadora @5 17
N21       @1 118
N82       @1 PSI

Format Inist (serveur)

NO : PASCAL 03-0203395 INIST
ET : Virtual reality application for direct-drive robot with force feedback
AU : HER (M.-G.); HSU (K.-S.); LAN (T.-S.)
AF : Department of Mechanical Engineering, Tatung University/Taipei/Taïwan (1 aut.); Department of Automation Engineering, Kao Yuan Institute of Technology/Lu-Chu Hsiang, Kaohsiung/Taïwan (2 aut.); Department of Mechanical Engineering, De Lin Institute of Technology/Tuchen/Taïwan (3 aut.)
DT : Publication en série; Niveau analytique
SO : International journal, advanced manufacturing technology; ISSN 0268-3768; Royaume-Uni; Da. 2003; Vol. 21; No. 1; Pp. 66-71; Bibl. 13 ref.
LA : Anglais
EA : Most of the current virtual reality systems use geometric models and non-sensing robots for simulation, which cannot provide an insight into the real operation of the task. In this paper, we present a new type of telerobotics based on the haptic virtual reality (VR) approach for simulating hitting a ball with force feedback attached to a human arm. The main components of the approach include a user interface, simulation, and a robot control scheme. The user interface is implemented as a combination of a virtual paddle and a graphic interface. The human operator manipulates a direct-drive type handler in the simulated environment, and the environment is simulated by the haptic virtual system that enables the operator to feel the actual force feedback from the virtual environment just as she/he would from the real environment. The haptic virtual system integrates the dynamics of the direct-drive active paddle and the virtual environment. whereas the paddle actuator consists of the dynamics of the paddle and the operator on the physical side. The control scheme employs a dynamic controller that is designed considering the force from the operator imposed on the paddle, and the force from the environment imposed on the paddle and feedback to the human arm. Experiments in the virtual environment on hitting a virtual ball system are used to validate the theoretical developments.
CC : 001D02D11; 001D02B04
FD : Robotique; Téléopération; Interface utilisateur; Interface graphique; Sensibilité tactile; Réalité virtuelle; Opérateur humain; Rétroaction; Infographie
ED : Robotics; Remote operation; User interface; Graphical interface; Tactile sensitivity; Virtual reality; Human operator; Feedback regulation; Computer graphics
SD : Robótica; Teleacción; Interfase usuario; Interfaz grafica; Sensibilidad tactil; Realidad virtual; Operador humano; Retroacción; Gráfico computadora
LO : INIST-22178.354000110770890080
ID : 03-0203395

Links to Exploration step

Pascal:03-0203395

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Virtual reality application for direct-drive robot with force feedback</title>
<author>
<name sortKey="Her, M G" sort="Her, M G" uniqKey="Her M" first="M.-G." last="Her">M.-G. Her</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, Tatung University</s1>
<s2>Taipei</s2>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hsu, K S" sort="Hsu, K S" uniqKey="Hsu K" first="K.-S." last="Hsu">K.-S. Hsu</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Automation Engineering, Kao Yuan Institute of Technology</s1>
<s2>Lu-Chu Hsiang, Kaohsiung</s2>
<s3>TWN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lan, T S" sort="Lan, T S" uniqKey="Lan T" first="T.-S." last="Lan">T.-S. Lan</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Mechanical Engineering, De Lin Institute of Technology</s1>
<s2>Tuchen</s2>
<s3>TWN</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">03-0203395</idno>
<date when="2003">2003</date>
<idno type="stanalyst">PASCAL 03-0203395 INIST</idno>
<idno type="RBID">Pascal:03-0203395</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001184</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Virtual reality application for direct-drive robot with force feedback</title>
<author>
<name sortKey="Her, M G" sort="Her, M G" uniqKey="Her M" first="M.-G." last="Her">M.-G. Her</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, Tatung University</s1>
<s2>Taipei</s2>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hsu, K S" sort="Hsu, K S" uniqKey="Hsu K" first="K.-S." last="Hsu">K.-S. Hsu</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Automation Engineering, Kao Yuan Institute of Technology</s1>
<s2>Lu-Chu Hsiang, Kaohsiung</s2>
<s3>TWN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lan, T S" sort="Lan, T S" uniqKey="Lan T" first="T.-S." last="Lan">T.-S. Lan</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Mechanical Engineering, De Lin Institute of Technology</s1>
<s2>Tuchen</s2>
<s3>TWN</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">International journal, advanced manufacturing technology</title>
<title level="j" type="abbreviated">Int. j. adv. manuf. technol.</title>
<idno type="ISSN">0268-3768</idno>
<imprint>
<date when="2003">2003</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">International journal, advanced manufacturing technology</title>
<title level="j" type="abbreviated">Int. j. adv. manuf. technol.</title>
<idno type="ISSN">0268-3768</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Computer graphics</term>
<term>Feedback regulation</term>
<term>Graphical interface</term>
<term>Human operator</term>
<term>Remote operation</term>
<term>Robotics</term>
<term>Tactile sensitivity</term>
<term>User interface</term>
<term>Virtual reality</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Robotique</term>
<term>Téléopération</term>
<term>Interface utilisateur</term>
<term>Interface graphique</term>
<term>Sensibilité tactile</term>
<term>Réalité virtuelle</term>
<term>Opérateur humain</term>
<term>Rétroaction</term>
<term>Infographie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Most of the current virtual reality systems use geometric models and non-sensing robots for simulation, which cannot provide an insight into the real operation of the task. In this paper, we present a new type of telerobotics based on the haptic virtual reality (VR) approach for simulating hitting a ball with force feedback attached to a human arm. The main components of the approach include a user interface, simulation, and a robot control scheme. The user interface is implemented as a combination of a virtual paddle and a graphic interface. The human operator manipulates a direct-drive type handler in the simulated environment, and the environment is simulated by the haptic virtual system that enables the operator to feel the actual force feedback from the virtual environment just as she/he would from the real environment. The haptic virtual system integrates the dynamics of the direct-drive active paddle and the virtual environment. whereas the paddle actuator consists of the dynamics of the paddle and the operator on the physical side. The control scheme employs a dynamic controller that is designed considering the force from the operator imposed on the paddle, and the force from the environment imposed on the paddle and feedback to the human arm. Experiments in the virtual environment on hitting a virtual ball system are used to validate the theoretical developments.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0268-3768</s0>
</fA01>
<fA03 i2="1">
<s0>Int. j. adv. manuf. technol.</s0>
</fA03>
<fA05>
<s2>21</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Virtual reality application for direct-drive robot with force feedback</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HER (M.-G.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HSU (K.-S.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LAN (T.-S.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Mechanical Engineering, Tatung University</s1>
<s2>Taipei</s2>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Automation Engineering, Kao Yuan Institute of Technology</s1>
<s2>Lu-Chu Hsiang, Kaohsiung</s2>
<s3>TWN</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Mechanical Engineering, De Lin Institute of Technology</s1>
<s2>Tuchen</s2>
<s3>TWN</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>66-71</s1>
</fA20>
<fA21>
<s1>2003</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>22178</s2>
<s5>354000110770890080</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2003 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>13 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>03-0203395</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>International journal, advanced manufacturing technology</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Most of the current virtual reality systems use geometric models and non-sensing robots for simulation, which cannot provide an insight into the real operation of the task. In this paper, we present a new type of telerobotics based on the haptic virtual reality (VR) approach for simulating hitting a ball with force feedback attached to a human arm. The main components of the approach include a user interface, simulation, and a robot control scheme. The user interface is implemented as a combination of a virtual paddle and a graphic interface. The human operator manipulates a direct-drive type handler in the simulated environment, and the environment is simulated by the haptic virtual system that enables the operator to feel the actual force feedback from the virtual environment just as she/he would from the real environment. The haptic virtual system integrates the dynamics of the direct-drive active paddle and the virtual environment. whereas the paddle actuator consists of the dynamics of the paddle and the operator on the physical side. The control scheme employs a dynamic controller that is designed considering the force from the operator imposed on the paddle, and the force from the environment imposed on the paddle and feedback to the human arm. Experiments in the virtual environment on hitting a virtual ball system are used to validate the theoretical developments.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02D11</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D02B04</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Robotique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Robotics</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Robótica</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Téléopération</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Remote operation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Teleacción</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Interface utilisateur</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>User interface</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Interfase usuario</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Interface graphique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Graphical interface</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Interfaz grafica</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Sensibilité tactile</s0>
<s5>08</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Tactile sensitivity</s0>
<s5>08</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Sensibilidad tactil</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Réalité virtuelle</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Virtual reality</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Realidad virtual</s0>
<s5>10</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Opérateur humain</s0>
<s5>13</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Human operator</s0>
<s5>13</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Operador humano</s0>
<s5>13</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Rétroaction</s0>
<s5>14</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Feedback regulation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Retroacción</s0>
<s5>14</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Infographie</s0>
<s5>17</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Computer graphics</s0>
<s5>17</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Gráfico computadora</s0>
<s5>17</s5>
</fC03>
<fN21>
<s1>118</s1>
</fN21>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 03-0203395 INIST</NO>
<ET>Virtual reality application for direct-drive robot with force feedback</ET>
<AU>HER (M.-G.); HSU (K.-S.); LAN (T.-S.)</AU>
<AF>Department of Mechanical Engineering, Tatung University/Taipei/Taïwan (1 aut.); Department of Automation Engineering, Kao Yuan Institute of Technology/Lu-Chu Hsiang, Kaohsiung/Taïwan (2 aut.); Department of Mechanical Engineering, De Lin Institute of Technology/Tuchen/Taïwan (3 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>International journal, advanced manufacturing technology; ISSN 0268-3768; Royaume-Uni; Da. 2003; Vol. 21; No. 1; Pp. 66-71; Bibl. 13 ref.</SO>
<LA>Anglais</LA>
<EA>Most of the current virtual reality systems use geometric models and non-sensing robots for simulation, which cannot provide an insight into the real operation of the task. In this paper, we present a new type of telerobotics based on the haptic virtual reality (VR) approach for simulating hitting a ball with force feedback attached to a human arm. The main components of the approach include a user interface, simulation, and a robot control scheme. The user interface is implemented as a combination of a virtual paddle and a graphic interface. The human operator manipulates a direct-drive type handler in the simulated environment, and the environment is simulated by the haptic virtual system that enables the operator to feel the actual force feedback from the virtual environment just as she/he would from the real environment. The haptic virtual system integrates the dynamics of the direct-drive active paddle and the virtual environment. whereas the paddle actuator consists of the dynamics of the paddle and the operator on the physical side. The control scheme employs a dynamic controller that is designed considering the force from the operator imposed on the paddle, and the force from the environment imposed on the paddle and feedback to the human arm. Experiments in the virtual environment on hitting a virtual ball system are used to validate the theoretical developments.</EA>
<CC>001D02D11; 001D02B04</CC>
<FD>Robotique; Téléopération; Interface utilisateur; Interface graphique; Sensibilité tactile; Réalité virtuelle; Opérateur humain; Rétroaction; Infographie</FD>
<ED>Robotics; Remote operation; User interface; Graphical interface; Tactile sensitivity; Virtual reality; Human operator; Feedback regulation; Computer graphics</ED>
<SD>Robótica; Teleacción; Interfase usuario; Interfaz grafica; Sensibilidad tactil; Realidad virtual; Operador humano; Retroacción; Gráfico computadora</SD>
<LO>INIST-22178.354000110770890080</LO>
<ID>03-0203395</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001184 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 001184 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:03-0203395
   |texte=   Virtual reality application for direct-drive robot with force feedback
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024