Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Development and validation methodology of the Nuss procedure surgical planner : Medical Simulation

Identifieur interne : 000097 ( PascalFrancis/Corpus ); précédent : 000096; suivant : 000098

Development and validation methodology of the Nuss procedure surgical planner : Medical Simulation

Auteurs : Krzysztof J. Rechowicz ; Frederic D. Mckenzie

Source :

RBID : Pascal:14-0039954

Descripteurs français

English descriptors

Abstract

Surgical planners are used to achieve the optimal outcome for surgery. They are especially desired in procedures where a positive aesthetic outcome is the primary goal, such as the Nuss procedure which is a minimally invasive surgery for correcting pectus excavatum (PE) - a congenital chest wall deformity which is characterized by a deep depression of the sternum. The Nuss procedure consists of placement of a metal bar(s) underneath the sternum, thereby forcibly changing the geometry of the ribcage. Because of the prevalence of PE and the popularity of the Nuss procedure, the demand to perform this surgery is greater than ever. Therefore, a Nuss procedure surgical planner is an invaluable planning tool ensuring an optimal physiological and aesthetic outcome. We propose the development and validation of the Nuss procedure planner. First, a generic model of the ribcage is developed. Then, the computed tomography (CT) data collected from actual patients with PE is used to create a set of patient-specific finite element models (FEM). Based on finite element analyses (FEA) a force-displacement data set is created. This data is used to train an artificial neural network (ANN) to generalize the data set. In order to evaluate the planning process, a methodology which uses an average shape of the chest for comparison with results of the Nuss procedure planner is developed. Haptic feedback and inertial tracking is also implemented. The results show that it is possible to utilize this approximation of the force-displacement model for a Nuss procedure planner and trainer.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0037-5497
A03   1    @0 Simulation : (S. Diego Calif.)
A05       @2 89
A06       @2 12
A08 01  1  ENG  @1 Development and validation methodology of the Nuss procedure surgical planner : Medical Simulation
A11 01  1    @1 RECHOWICZ (Krzysztof J.)
A11 02  1    @1 MCKENZIE (Frederic D.)
A14 01      @1 Modeling, Simulation and Visualization Engineering Department, Old Dominion University @2 Norfolk, Virginia @3 USA @Z 1 aut. @Z 2 aut.
A20       @1 1474-1488
A21       @1 2013
A23 01      @0 ENG
A43 01      @1 INIST @2 4999 @5 354000501623470060
A44       @0 0000 @1 © 2014 INIST-CNRS. All rights reserved.
A45       @0 23 ref.
A47 01  1    @0 14-0039954
A60       @1 P
A61       @0 A
A64 01  1    @0 Simulation : (San Diego, Calif.)
A66 01      @0 USA
C01 01    ENG  @0 Surgical planners are used to achieve the optimal outcome for surgery. They are especially desired in procedures where a positive aesthetic outcome is the primary goal, such as the Nuss procedure which is a minimally invasive surgery for correcting pectus excavatum (PE) - a congenital chest wall deformity which is characterized by a deep depression of the sternum. The Nuss procedure consists of placement of a metal bar(s) underneath the sternum, thereby forcibly changing the geometry of the ribcage. Because of the prevalence of PE and the popularity of the Nuss procedure, the demand to perform this surgery is greater than ever. Therefore, a Nuss procedure surgical planner is an invaluable planning tool ensuring an optimal physiological and aesthetic outcome. We propose the development and validation of the Nuss procedure planner. First, a generic model of the ribcage is developed. Then, the computed tomography (CT) data collected from actual patients with PE is used to create a set of patient-specific finite element models (FEM). Based on finite element analyses (FEA) a force-displacement data set is created. This data is used to train an artificial neural network (ANN) to generalize the data set. In order to evaluate the planning process, a methodology which uses an average shape of the chest for comparison with results of the Nuss procedure planner is developed. Haptic feedback and inertial tracking is also implemented. The results show that it is possible to utilize this approximation of the force-displacement model for a Nuss procedure planner and trainer.
C02 01  X    @0 002B25J
C02 02  X    @0 001D02C06
C02 03  X    @0 001D02B04
C02 04  X    @0 001D02B08
C03 01  X  FRE  @0 Chirurgie miniinvasive @5 06
C03 01  X  ENG  @0 Minimally invasive surgery @5 06
C03 01  X  SPA  @0 Cirugía mini invasiva @5 06
C03 02  X  FRE  @0 Planification @5 07
C03 02  X  ENG  @0 Planning @5 07
C03 02  X  SPA  @0 Planificación @5 07
C03 03  X  FRE  @0 Interface utilisateur @5 08
C03 03  X  ENG  @0 User interface @5 08
C03 03  X  SPA  @0 Interfase usuario @5 08
C03 04  X  FRE  @0 Pistage @5 09
C03 04  X  ENG  @0 Tracking @5 09
C03 04  X  SPA  @0 Rastreo @5 09
C03 05  X  FRE  @0 Poursuite @5 10
C03 05  X  ENG  @0 Tracking(movable target) @5 10
C03 05  X  SPA  @0 Persecución y continuación @5 10
C03 06  X  FRE  @0 Paroi thoracique @5 15
C03 06  X  ENG  @0 Chest wall @5 15
C03 06  X  SPA  @0 Pared torácica @5 15
C03 07  X  FRE  @0 Esthétique @5 18
C03 07  X  ENG  @0 Aesthetics @5 18
C03 07  X  SPA  @0 Estética @5 18
C03 08  X  FRE  @0 Etat dépressif @5 19
C03 08  X  ENG  @0 Depression @5 19
C03 08  X  SPA  @0 Estado depresivo @5 19
C03 09  X  FRE  @0 Malformation @5 20
C03 09  X  ENG  @0 Malformation @5 20
C03 09  X  SPA  @0 Malformación @5 20
C03 10  X  FRE  @0 Physiologie @5 21
C03 10  X  ENG  @0 Physiology @5 21
C03 10  X  SPA  @0 Fisiología @5 21
C03 11  X  FRE  @0 Sensibilité tactile @5 22
C03 11  X  ENG  @0 Tactile sensitivity @5 22
C03 11  X  SPA  @0 Sensibilidad tactil @5 22
C03 12  X  FRE  @0 Validation @5 23
C03 12  X  ENG  @0 Validation @5 23
C03 12  X  SPA  @0 Validación @5 23
C03 13  X  FRE  @0 Modélisation @5 24
C03 13  X  ENG  @0 Modeling @5 24
C03 13  X  SPA  @0 Modelización @5 24
C03 14  X  FRE  @0 Méthode élément fini @5 25
C03 14  X  ENG  @0 Finite element method @5 25
C03 14  X  SPA  @0 Método elemento finito @5 25
C03 15  X  FRE  @0 Réseau neuronal @5 26
C03 15  X  ENG  @0 Neural network @5 26
C03 15  X  SPA  @0 Red neuronal @5 26
C03 16  X  FRE  @0 Tomographie numérique @4 CD @5 96
C03 16  X  ENG  @0 Computerized tomography @4 CD @5 96
C03 16  X  SPA  @0 Tomografía digital @4 CD @5 96
N21       @1 041
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 14-0039954 INIST
ET : Development and validation methodology of the Nuss procedure surgical planner : Medical Simulation
AU : RECHOWICZ (Krzysztof J.); MCKENZIE (Frederic D.)
AF : Modeling, Simulation and Visualization Engineering Department, Old Dominion University/Norfolk, Virginia/Etats-Unis (1 aut., 2 aut.)
DT : Publication en série; Niveau analytique
SO : Simulation : (San Diego, Calif.); ISSN 0037-5497; Etats-Unis; Da. 2013; Vol. 89; No. 12; Pp. 1474-1488; Bibl. 23 ref.
LA : Anglais
EA : Surgical planners are used to achieve the optimal outcome for surgery. They are especially desired in procedures where a positive aesthetic outcome is the primary goal, such as the Nuss procedure which is a minimally invasive surgery for correcting pectus excavatum (PE) - a congenital chest wall deformity which is characterized by a deep depression of the sternum. The Nuss procedure consists of placement of a metal bar(s) underneath the sternum, thereby forcibly changing the geometry of the ribcage. Because of the prevalence of PE and the popularity of the Nuss procedure, the demand to perform this surgery is greater than ever. Therefore, a Nuss procedure surgical planner is an invaluable planning tool ensuring an optimal physiological and aesthetic outcome. We propose the development and validation of the Nuss procedure planner. First, a generic model of the ribcage is developed. Then, the computed tomography (CT) data collected from actual patients with PE is used to create a set of patient-specific finite element models (FEM). Based on finite element analyses (FEA) a force-displacement data set is created. This data is used to train an artificial neural network (ANN) to generalize the data set. In order to evaluate the planning process, a methodology which uses an average shape of the chest for comparison with results of the Nuss procedure planner is developed. Haptic feedback and inertial tracking is also implemented. The results show that it is possible to utilize this approximation of the force-displacement model for a Nuss procedure planner and trainer.
CC : 002B25J; 001D02C06; 001D02B04; 001D02B08
FD : Chirurgie miniinvasive; Planification; Interface utilisateur; Pistage; Poursuite; Paroi thoracique; Esthétique; Etat dépressif; Malformation; Physiologie; Sensibilité tactile; Validation; Modélisation; Méthode élément fini; Réseau neuronal; Tomographie numérique
ED : Minimally invasive surgery; Planning; User interface; Tracking; Tracking(movable target); Chest wall; Aesthetics; Depression; Malformation; Physiology; Tactile sensitivity; Validation; Modeling; Finite element method; Neural network; Computerized tomography
SD : Cirugía mini invasiva; Planificación; Interfase usuario; Rastreo; Persecución y continuación; Pared torácica; Estética; Estado depresivo; Malformación; Fisiología; Sensibilidad tactil; Validación; Modelización; Método elemento finito; Red neuronal; Tomografía digital
LO : INIST-4999.354000501623470060
ID : 14-0039954

Links to Exploration step

Pascal:14-0039954

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Development and validation methodology of the Nuss procedure surgical planner : Medical Simulation</title>
<author>
<name sortKey="Rechowicz, Krzysztof J" sort="Rechowicz, Krzysztof J" uniqKey="Rechowicz K" first="Krzysztof J." last="Rechowicz">Krzysztof J. Rechowicz</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Modeling, Simulation and Visualization Engineering Department, Old Dominion University</s1>
<s2>Norfolk, Virginia</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mckenzie, Frederic D" sort="Mckenzie, Frederic D" uniqKey="Mckenzie F" first="Frederic D." last="Mckenzie">Frederic D. Mckenzie</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Modeling, Simulation and Visualization Engineering Department, Old Dominion University</s1>
<s2>Norfolk, Virginia</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">14-0039954</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 14-0039954 INIST</idno>
<idno type="RBID">Pascal:14-0039954</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000097</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Development and validation methodology of the Nuss procedure surgical planner : Medical Simulation</title>
<author>
<name sortKey="Rechowicz, Krzysztof J" sort="Rechowicz, Krzysztof J" uniqKey="Rechowicz K" first="Krzysztof J." last="Rechowicz">Krzysztof J. Rechowicz</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Modeling, Simulation and Visualization Engineering Department, Old Dominion University</s1>
<s2>Norfolk, Virginia</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mckenzie, Frederic D" sort="Mckenzie, Frederic D" uniqKey="Mckenzie F" first="Frederic D." last="Mckenzie">Frederic D. Mckenzie</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Modeling, Simulation and Visualization Engineering Department, Old Dominion University</s1>
<s2>Norfolk, Virginia</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Simulation : (San Diego, Calif.)</title>
<title level="j" type="abbreviated">Simulation : (S. Diego Calif.)</title>
<idno type="ISSN">0037-5497</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Simulation : (San Diego, Calif.)</title>
<title level="j" type="abbreviated">Simulation : (S. Diego Calif.)</title>
<idno type="ISSN">0037-5497</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aesthetics</term>
<term>Chest wall</term>
<term>Computerized tomography</term>
<term>Depression</term>
<term>Finite element method</term>
<term>Malformation</term>
<term>Minimally invasive surgery</term>
<term>Modeling</term>
<term>Neural network</term>
<term>Physiology</term>
<term>Planning</term>
<term>Tactile sensitivity</term>
<term>Tracking</term>
<term>Tracking(movable target)</term>
<term>User interface</term>
<term>Validation</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Chirurgie miniinvasive</term>
<term>Planification</term>
<term>Interface utilisateur</term>
<term>Pistage</term>
<term>Poursuite</term>
<term>Paroi thoracique</term>
<term>Esthétique</term>
<term>Etat dépressif</term>
<term>Malformation</term>
<term>Physiologie</term>
<term>Sensibilité tactile</term>
<term>Validation</term>
<term>Modélisation</term>
<term>Méthode élément fini</term>
<term>Réseau neuronal</term>
<term>Tomographie numérique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Surgical planners are used to achieve the optimal outcome for surgery. They are especially desired in procedures where a positive aesthetic outcome is the primary goal, such as the Nuss procedure which is a minimally invasive surgery for correcting pectus excavatum (PE) - a congenital chest wall deformity which is characterized by a deep depression of the sternum. The Nuss procedure consists of placement of a metal bar(s) underneath the sternum, thereby forcibly changing the geometry of the ribcage. Because of the prevalence of PE and the popularity of the Nuss procedure, the demand to perform this surgery is greater than ever. Therefore, a Nuss procedure surgical planner is an invaluable planning tool ensuring an optimal physiological and aesthetic outcome. We propose the development and validation of the Nuss procedure planner. First, a generic model of the ribcage is developed. Then, the computed tomography (CT) data collected from actual patients with PE is used to create a set of patient-specific finite element models (FEM). Based on finite element analyses (FEA) a force-displacement data set is created. This data is used to train an artificial neural network (ANN) to generalize the data set. In order to evaluate the planning process, a methodology which uses an average shape of the chest for comparison with results of the Nuss procedure planner is developed. Haptic feedback and inertial tracking is also implemented. The results show that it is possible to utilize this approximation of the force-displacement model for a Nuss procedure planner and trainer.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0037-5497</s0>
</fA01>
<fA03 i2="1">
<s0>Simulation : (S. Diego Calif.)</s0>
</fA03>
<fA05>
<s2>89</s2>
</fA05>
<fA06>
<s2>12</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Development and validation methodology of the Nuss procedure surgical planner : Medical Simulation</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>RECHOWICZ (Krzysztof J.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MCKENZIE (Frederic D.)</s1>
</fA11>
<fA14 i1="01">
<s1>Modeling, Simulation and Visualization Engineering Department, Old Dominion University</s1>
<s2>Norfolk, Virginia</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>1474-1488</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>4999</s2>
<s5>354000501623470060</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>23 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0039954</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Simulation : (San Diego, Calif.)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Surgical planners are used to achieve the optimal outcome for surgery. They are especially desired in procedures where a positive aesthetic outcome is the primary goal, such as the Nuss procedure which is a minimally invasive surgery for correcting pectus excavatum (PE) - a congenital chest wall deformity which is characterized by a deep depression of the sternum. The Nuss procedure consists of placement of a metal bar(s) underneath the sternum, thereby forcibly changing the geometry of the ribcage. Because of the prevalence of PE and the popularity of the Nuss procedure, the demand to perform this surgery is greater than ever. Therefore, a Nuss procedure surgical planner is an invaluable planning tool ensuring an optimal physiological and aesthetic outcome. We propose the development and validation of the Nuss procedure planner. First, a generic model of the ribcage is developed. Then, the computed tomography (CT) data collected from actual patients with PE is used to create a set of patient-specific finite element models (FEM). Based on finite element analyses (FEA) a force-displacement data set is created. This data is used to train an artificial neural network (ANN) to generalize the data set. In order to evaluate the planning process, a methodology which uses an average shape of the chest for comparison with results of the Nuss procedure planner is developed. Haptic feedback and inertial tracking is also implemented. The results show that it is possible to utilize this approximation of the force-displacement model for a Nuss procedure planner and trainer.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002B25J</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D02C06</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D02B04</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D02B08</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Chirurgie miniinvasive</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Minimally invasive surgery</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Cirugía mini invasiva</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Planification</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Planning</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Planificación</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Interface utilisateur</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>User interface</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Interfase usuario</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Pistage</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Tracking</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Rastreo</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Poursuite</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Tracking(movable target)</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Persecución y continuación</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Paroi thoracique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Chest wall</s0>
<s5>15</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Pared torácica</s0>
<s5>15</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Esthétique</s0>
<s5>18</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Aesthetics</s0>
<s5>18</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Estética</s0>
<s5>18</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Etat dépressif</s0>
<s5>19</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Depression</s0>
<s5>19</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Estado depresivo</s0>
<s5>19</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Malformation</s0>
<s5>20</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Malformation</s0>
<s5>20</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Malformación</s0>
<s5>20</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Physiologie</s0>
<s5>21</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Physiology</s0>
<s5>21</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Fisiología</s0>
<s5>21</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Sensibilité tactile</s0>
<s5>22</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Tactile sensitivity</s0>
<s5>22</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Sensibilidad tactil</s0>
<s5>22</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Validation</s0>
<s5>23</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Validation</s0>
<s5>23</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Validación</s0>
<s5>23</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>24</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>24</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>24</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Méthode élément fini</s0>
<s5>25</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Finite element method</s0>
<s5>25</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Método elemento finito</s0>
<s5>25</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Réseau neuronal</s0>
<s5>26</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Neural network</s0>
<s5>26</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Red neuronal</s0>
<s5>26</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Tomographie numérique</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Computerized tomography</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Tomografía digital</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>041</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 14-0039954 INIST</NO>
<ET>Development and validation methodology of the Nuss procedure surgical planner : Medical Simulation</ET>
<AU>RECHOWICZ (Krzysztof J.); MCKENZIE (Frederic D.)</AU>
<AF>Modeling, Simulation and Visualization Engineering Department, Old Dominion University/Norfolk, Virginia/Etats-Unis (1 aut., 2 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Simulation : (San Diego, Calif.); ISSN 0037-5497; Etats-Unis; Da. 2013; Vol. 89; No. 12; Pp. 1474-1488; Bibl. 23 ref.</SO>
<LA>Anglais</LA>
<EA>Surgical planners are used to achieve the optimal outcome for surgery. They are especially desired in procedures where a positive aesthetic outcome is the primary goal, such as the Nuss procedure which is a minimally invasive surgery for correcting pectus excavatum (PE) - a congenital chest wall deformity which is characterized by a deep depression of the sternum. The Nuss procedure consists of placement of a metal bar(s) underneath the sternum, thereby forcibly changing the geometry of the ribcage. Because of the prevalence of PE and the popularity of the Nuss procedure, the demand to perform this surgery is greater than ever. Therefore, a Nuss procedure surgical planner is an invaluable planning tool ensuring an optimal physiological and aesthetic outcome. We propose the development and validation of the Nuss procedure planner. First, a generic model of the ribcage is developed. Then, the computed tomography (CT) data collected from actual patients with PE is used to create a set of patient-specific finite element models (FEM). Based on finite element analyses (FEA) a force-displacement data set is created. This data is used to train an artificial neural network (ANN) to generalize the data set. In order to evaluate the planning process, a methodology which uses an average shape of the chest for comparison with results of the Nuss procedure planner is developed. Haptic feedback and inertial tracking is also implemented. The results show that it is possible to utilize this approximation of the force-displacement model for a Nuss procedure planner and trainer.</EA>
<CC>002B25J; 001D02C06; 001D02B04; 001D02B08</CC>
<FD>Chirurgie miniinvasive; Planification; Interface utilisateur; Pistage; Poursuite; Paroi thoracique; Esthétique; Etat dépressif; Malformation; Physiologie; Sensibilité tactile; Validation; Modélisation; Méthode élément fini; Réseau neuronal; Tomographie numérique</FD>
<ED>Minimally invasive surgery; Planning; User interface; Tracking; Tracking(movable target); Chest wall; Aesthetics; Depression; Malformation; Physiology; Tactile sensitivity; Validation; Modeling; Finite element method; Neural network; Computerized tomography</ED>
<SD>Cirugía mini invasiva; Planificación; Interfase usuario; Rastreo; Persecución y continuación; Pared torácica; Estética; Estado depresivo; Malformación; Fisiología; Sensibilidad tactil; Validación; Modelización; Método elemento finito; Red neuronal; Tomografía digital</SD>
<LO>INIST-4999.354000501623470060</LO>
<ID>14-0039954</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000097 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000097 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:14-0039954
   |texte=   Development and validation methodology of the Nuss procedure surgical planner : Medical Simulation
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024