Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Development and validation methodology of the Nuss procedure surgical planner : Medical Simulation

Identifieur interne : 000164 ( PascalFrancis/Checkpoint ); précédent : 000163; suivant : 000165

Development and validation methodology of the Nuss procedure surgical planner : Medical Simulation

Auteurs : Krzysztof J. Rechowicz [États-Unis] ; Frederic D. Mckenzie [États-Unis]

Source :

RBID : Pascal:14-0039954

Descripteurs français

English descriptors

Abstract

Surgical planners are used to achieve the optimal outcome for surgery. They are especially desired in procedures where a positive aesthetic outcome is the primary goal, such as the Nuss procedure which is a minimally invasive surgery for correcting pectus excavatum (PE) - a congenital chest wall deformity which is characterized by a deep depression of the sternum. The Nuss procedure consists of placement of a metal bar(s) underneath the sternum, thereby forcibly changing the geometry of the ribcage. Because of the prevalence of PE and the popularity of the Nuss procedure, the demand to perform this surgery is greater than ever. Therefore, a Nuss procedure surgical planner is an invaluable planning tool ensuring an optimal physiological and aesthetic outcome. We propose the development and validation of the Nuss procedure planner. First, a generic model of the ribcage is developed. Then, the computed tomography (CT) data collected from actual patients with PE is used to create a set of patient-specific finite element models (FEM). Based on finite element analyses (FEA) a force-displacement data set is created. This data is used to train an artificial neural network (ANN) to generalize the data set. In order to evaluate the planning process, a methodology which uses an average shape of the chest for comparison with results of the Nuss procedure planner is developed. Haptic feedback and inertial tracking is also implemented. The results show that it is possible to utilize this approximation of the force-displacement model for a Nuss procedure planner and trainer.


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0039954

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Development and validation methodology of the Nuss procedure surgical planner : Medical Simulation</title>
<author>
<name sortKey="Rechowicz, Krzysztof J" sort="Rechowicz, Krzysztof J" uniqKey="Rechowicz K" first="Krzysztof J." last="Rechowicz">Krzysztof J. Rechowicz</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Modeling, Simulation and Visualization Engineering Department, Old Dominion University</s1>
<s2>Norfolk, Virginia</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mckenzie, Frederic D" sort="Mckenzie, Frederic D" uniqKey="Mckenzie F" first="Frederic D." last="Mckenzie">Frederic D. Mckenzie</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Modeling, Simulation and Visualization Engineering Department, Old Dominion University</s1>
<s2>Norfolk, Virginia</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">14-0039954</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 14-0039954 INIST</idno>
<idno type="RBID">Pascal:14-0039954</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000097</idno>
<idno type="wicri:Area/PascalFrancis/Curation">001162</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000164</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Development and validation methodology of the Nuss procedure surgical planner : Medical Simulation</title>
<author>
<name sortKey="Rechowicz, Krzysztof J" sort="Rechowicz, Krzysztof J" uniqKey="Rechowicz K" first="Krzysztof J." last="Rechowicz">Krzysztof J. Rechowicz</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Modeling, Simulation and Visualization Engineering Department, Old Dominion University</s1>
<s2>Norfolk, Virginia</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mckenzie, Frederic D" sort="Mckenzie, Frederic D" uniqKey="Mckenzie F" first="Frederic D." last="Mckenzie">Frederic D. Mckenzie</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Modeling, Simulation and Visualization Engineering Department, Old Dominion University</s1>
<s2>Norfolk, Virginia</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Simulation : (San Diego, Calif.)</title>
<title level="j" type="abbreviated">Simulation : (S. Diego Calif.)</title>
<idno type="ISSN">0037-5497</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Simulation : (San Diego, Calif.)</title>
<title level="j" type="abbreviated">Simulation : (S. Diego Calif.)</title>
<idno type="ISSN">0037-5497</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aesthetics</term>
<term>Chest wall</term>
<term>Computerized tomography</term>
<term>Depression</term>
<term>Finite element method</term>
<term>Malformation</term>
<term>Minimally invasive surgery</term>
<term>Modeling</term>
<term>Neural network</term>
<term>Physiology</term>
<term>Planning</term>
<term>Tactile sensitivity</term>
<term>Tracking</term>
<term>Tracking(movable target)</term>
<term>User interface</term>
<term>Validation</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Chirurgie miniinvasive</term>
<term>Planification</term>
<term>Interface utilisateur</term>
<term>Pistage</term>
<term>Poursuite</term>
<term>Paroi thoracique</term>
<term>Esthétique</term>
<term>Etat dépressif</term>
<term>Malformation</term>
<term>Physiologie</term>
<term>Sensibilité tactile</term>
<term>Validation</term>
<term>Modélisation</term>
<term>Méthode élément fini</term>
<term>Réseau neuronal</term>
<term>Tomographie numérique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Surgical planners are used to achieve the optimal outcome for surgery. They are especially desired in procedures where a positive aesthetic outcome is the primary goal, such as the Nuss procedure which is a minimally invasive surgery for correcting pectus excavatum (PE) - a congenital chest wall deformity which is characterized by a deep depression of the sternum. The Nuss procedure consists of placement of a metal bar(s) underneath the sternum, thereby forcibly changing the geometry of the ribcage. Because of the prevalence of PE and the popularity of the Nuss procedure, the demand to perform this surgery is greater than ever. Therefore, a Nuss procedure surgical planner is an invaluable planning tool ensuring an optimal physiological and aesthetic outcome. We propose the development and validation of the Nuss procedure planner. First, a generic model of the ribcage is developed. Then, the computed tomography (CT) data collected from actual patients with PE is used to create a set of patient-specific finite element models (FEM). Based on finite element analyses (FEA) a force-displacement data set is created. This data is used to train an artificial neural network (ANN) to generalize the data set. In order to evaluate the planning process, a methodology which uses an average shape of the chest for comparison with results of the Nuss procedure planner is developed. Haptic feedback and inertial tracking is also implemented. The results show that it is possible to utilize this approximation of the force-displacement model for a Nuss procedure planner and trainer.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0037-5497</s0>
</fA01>
<fA03 i2="1">
<s0>Simulation : (S. Diego Calif.)</s0>
</fA03>
<fA05>
<s2>89</s2>
</fA05>
<fA06>
<s2>12</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Development and validation methodology of the Nuss procedure surgical planner : Medical Simulation</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>RECHOWICZ (Krzysztof J.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MCKENZIE (Frederic D.)</s1>
</fA11>
<fA14 i1="01">
<s1>Modeling, Simulation and Visualization Engineering Department, Old Dominion University</s1>
<s2>Norfolk, Virginia</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>1474-1488</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>4999</s2>
<s5>354000501623470060</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>23 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0039954</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Simulation : (San Diego, Calif.)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Surgical planners are used to achieve the optimal outcome for surgery. They are especially desired in procedures where a positive aesthetic outcome is the primary goal, such as the Nuss procedure which is a minimally invasive surgery for correcting pectus excavatum (PE) - a congenital chest wall deformity which is characterized by a deep depression of the sternum. The Nuss procedure consists of placement of a metal bar(s) underneath the sternum, thereby forcibly changing the geometry of the ribcage. Because of the prevalence of PE and the popularity of the Nuss procedure, the demand to perform this surgery is greater than ever. Therefore, a Nuss procedure surgical planner is an invaluable planning tool ensuring an optimal physiological and aesthetic outcome. We propose the development and validation of the Nuss procedure planner. First, a generic model of the ribcage is developed. Then, the computed tomography (CT) data collected from actual patients with PE is used to create a set of patient-specific finite element models (FEM). Based on finite element analyses (FEA) a force-displacement data set is created. This data is used to train an artificial neural network (ANN) to generalize the data set. In order to evaluate the planning process, a methodology which uses an average shape of the chest for comparison with results of the Nuss procedure planner is developed. Haptic feedback and inertial tracking is also implemented. The results show that it is possible to utilize this approximation of the force-displacement model for a Nuss procedure planner and trainer.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002B25J</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D02C06</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D02B04</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D02B08</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Chirurgie miniinvasive</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Minimally invasive surgery</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Cirugía mini invasiva</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Planification</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Planning</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Planificación</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Interface utilisateur</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>User interface</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Interfase usuario</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Pistage</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Tracking</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Rastreo</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Poursuite</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Tracking(movable target)</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Persecución y continuación</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Paroi thoracique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Chest wall</s0>
<s5>15</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Pared torácica</s0>
<s5>15</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Esthétique</s0>
<s5>18</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Aesthetics</s0>
<s5>18</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Estética</s0>
<s5>18</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Etat dépressif</s0>
<s5>19</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Depression</s0>
<s5>19</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Estado depresivo</s0>
<s5>19</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Malformation</s0>
<s5>20</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Malformation</s0>
<s5>20</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Malformación</s0>
<s5>20</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Physiologie</s0>
<s5>21</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Physiology</s0>
<s5>21</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Fisiología</s0>
<s5>21</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Sensibilité tactile</s0>
<s5>22</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Tactile sensitivity</s0>
<s5>22</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Sensibilidad tactil</s0>
<s5>22</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Validation</s0>
<s5>23</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Validation</s0>
<s5>23</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Validación</s0>
<s5>23</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>24</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>24</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>24</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Méthode élément fini</s0>
<s5>25</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Finite element method</s0>
<s5>25</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Método elemento finito</s0>
<s5>25</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Réseau neuronal</s0>
<s5>26</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Neural network</s0>
<s5>26</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Red neuronal</s0>
<s5>26</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Tomographie numérique</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Computerized tomography</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Tomografía digital</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>041</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Virginie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Virginie">
<name sortKey="Rechowicz, Krzysztof J" sort="Rechowicz, Krzysztof J" uniqKey="Rechowicz K" first="Krzysztof J." last="Rechowicz">Krzysztof J. Rechowicz</name>
</region>
<name sortKey="Mckenzie, Frederic D" sort="Mckenzie, Frederic D" uniqKey="Mckenzie F" first="Frederic D." last="Mckenzie">Frederic D. Mckenzie</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000164 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Checkpoint/biblio.hfd -nk 000164 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Checkpoint
   |type=    RBID
   |clé=     Pascal:14-0039954
   |texte=   Development and validation methodology of the Nuss procedure surgical planner : Medical Simulation
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024