Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Force field adaptation can be learned using vision in the absence of proprioceptive error.

Identifieur interne : 001A75 ( Ncbi/Merge ); précédent : 001A74; suivant : 001A76

Force field adaptation can be learned using vision in the absence of proprioceptive error.

Auteurs : Alejandro Melendez-Calderon [Royaume-Uni] ; Lorenzo Masia ; Roger Gassert ; Giulio Sandini ; Etienne Burdet

Source :

RBID : pubmed:21652280

English descriptors

Abstract

It has been shown that people can learn to perform a variety of motor tasks in novel dynamic environments without visual feedback, highlighting the importance of proprioceptive feedback in motor learning. However, our results show that it is possible to learn a viscous curl force field without proprioceptive error to drive adaptation, by providing visual information about the position error. Subjects performed reaching movements in a constraining channel created by a robotic interface. The force that subjects applied against the haptic channel was used to predict the unconstrained hand trajectory under a viscous curl force field. This trajectory was provided as visual feedback to the subjects during movement (virtual dynamics). Subjects were able to use this visual information (discrepant with proprioception) and gradually learned to compensate for the virtual dynamics. Unconstrained catch trials, performed without the haptic channel after learning the virtual dynamics, exhibited similar trajectories to those of subjects who learned to move in the force field in the unconstrained environment. Our results demonstrate that the internal model of the external dynamics that was formed through learning without proprioceptive error was accurate enough to allow compensation for the force field in the unconstrained environment. They suggest a method to overcome limitations in learning resulting from mechanical constraints of robotic trainers by providing suitable visual feedback, potentially enabling efficient physical training and rehabilitation using simple robotic devices with few degrees-of-freedom.

DOI: 10.1109/TNSRE.2011.2125990
PubMed: 21652280

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:21652280

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Force field adaptation can be learned using vision in the absence of proprioceptive error.</title>
<author>
<name sortKey="Melendez Calderon, Alejandro" sort="Melendez Calderon, Alejandro" uniqKey="Melendez Calderon A" first="Alejandro" last="Melendez-Calderon">Alejandro Melendez-Calderon</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Bioengineering, Imperial College of Science Technology and Medicine, SW72AZ London, UK. amelende@imperial.ac.uk</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Bioengineering, Imperial College of Science Technology and Medicine, SW72AZ London</wicri:regionArea>
<wicri:noRegion>SW72AZ London</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Masia, Lorenzo" sort="Masia, Lorenzo" uniqKey="Masia L" first="Lorenzo" last="Masia">Lorenzo Masia</name>
</author>
<author>
<name sortKey="Gassert, Roger" sort="Gassert, Roger" uniqKey="Gassert R" first="Roger" last="Gassert">Roger Gassert</name>
</author>
<author>
<name sortKey="Sandini, Giulio" sort="Sandini, Giulio" uniqKey="Sandini G" first="Giulio" last="Sandini">Giulio Sandini</name>
</author>
<author>
<name sortKey="Burdet, Etienne" sort="Burdet, Etienne" uniqKey="Burdet E" first="Etienne" last="Burdet">Etienne Burdet</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="doi">10.1109/TNSRE.2011.2125990</idno>
<idno type="RBID">pubmed:21652280</idno>
<idno type="pmid">21652280</idno>
<idno type="wicri:Area/PubMed/Corpus">000E53</idno>
<idno type="wicri:Area/PubMed/Curation">000E53</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000D67</idno>
<idno type="wicri:Area/Ncbi/Merge">001A75</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Force field adaptation can be learned using vision in the absence of proprioceptive error.</title>
<author>
<name sortKey="Melendez Calderon, Alejandro" sort="Melendez Calderon, Alejandro" uniqKey="Melendez Calderon A" first="Alejandro" last="Melendez-Calderon">Alejandro Melendez-Calderon</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Bioengineering, Imperial College of Science Technology and Medicine, SW72AZ London, UK. amelende@imperial.ac.uk</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Bioengineering, Imperial College of Science Technology and Medicine, SW72AZ London</wicri:regionArea>
<wicri:noRegion>SW72AZ London</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Masia, Lorenzo" sort="Masia, Lorenzo" uniqKey="Masia L" first="Lorenzo" last="Masia">Lorenzo Masia</name>
</author>
<author>
<name sortKey="Gassert, Roger" sort="Gassert, Roger" uniqKey="Gassert R" first="Roger" last="Gassert">Roger Gassert</name>
</author>
<author>
<name sortKey="Sandini, Giulio" sort="Sandini, Giulio" uniqKey="Sandini G" first="Giulio" last="Sandini">Giulio Sandini</name>
</author>
<author>
<name sortKey="Burdet, Etienne" sort="Burdet, Etienne" uniqKey="Burdet E" first="Etienne" last="Burdet">Etienne Burdet</name>
</author>
</analytic>
<series>
<title level="j">IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society</title>
<idno type="eISSN">1558-0210</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Psychological (physiology)</term>
<term>Adult</term>
<term>Algorithms</term>
<term>Arm (physiology)</term>
<term>Biomechanical Phenomena</term>
<term>Feedback, Sensory (physiology)</term>
<term>Female</term>
<term>Hand (physiology)</term>
<term>Humans</term>
<term>Learning (physiology)</term>
<term>Male</term>
<term>Models, Theoretical</term>
<term>Movement (physiology)</term>
<term>Photic Stimulation</term>
<term>Proprioception (physiology)</term>
<term>Psychomotor Performance (physiology)</term>
<term>Robotics</term>
<term>Visual Perception (physiology)</term>
<term>Young Adult</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Adaptation, Psychological</term>
<term>Arm</term>
<term>Feedback, Sensory</term>
<term>Hand</term>
<term>Learning</term>
<term>Movement</term>
<term>Proprioception</term>
<term>Psychomotor Performance</term>
<term>Visual Perception</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Algorithms</term>
<term>Biomechanical Phenomena</term>
<term>Female</term>
<term>Humans</term>
<term>Male</term>
<term>Models, Theoretical</term>
<term>Photic Stimulation</term>
<term>Robotics</term>
<term>Young Adult</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">It has been shown that people can learn to perform a variety of motor tasks in novel dynamic environments without visual feedback, highlighting the importance of proprioceptive feedback in motor learning. However, our results show that it is possible to learn a viscous curl force field without proprioceptive error to drive adaptation, by providing visual information about the position error. Subjects performed reaching movements in a constraining channel created by a robotic interface. The force that subjects applied against the haptic channel was used to predict the unconstrained hand trajectory under a viscous curl force field. This trajectory was provided as visual feedback to the subjects during movement (virtual dynamics). Subjects were able to use this visual information (discrepant with proprioception) and gradually learned to compensate for the virtual dynamics. Unconstrained catch trials, performed without the haptic channel after learning the virtual dynamics, exhibited similar trajectories to those of subjects who learned to move in the force field in the unconstrained environment. Our results demonstrate that the internal model of the external dynamics that was formed through learning without proprioceptive error was accurate enough to allow compensation for the force field in the unconstrained environment. They suggest a method to overcome limitations in learning resulting from mechanical constraints of robotic trainers by providing suitable visual feedback, potentially enabling efficient physical training and rehabilitation using simple robotic devices with few degrees-of-freedom.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">21652280</PMID>
<DateCreated>
<Year>2011</Year>
<Month>06</Month>
<Day>09</Day>
</DateCreated>
<DateCompleted>
<Year>2011</Year>
<Month>10</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1558-0210</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>19</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2011</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society</Title>
<ISOAbbreviation>IEEE Trans Neural Syst Rehabil Eng</ISOAbbreviation>
</Journal>
<ArticleTitle>Force field adaptation can be learned using vision in the absence of proprioceptive error.</ArticleTitle>
<Pagination>
<MedlinePgn>298-306</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1109/TNSRE.2011.2125990</ELocationID>
<Abstract>
<AbstractText>It has been shown that people can learn to perform a variety of motor tasks in novel dynamic environments without visual feedback, highlighting the importance of proprioceptive feedback in motor learning. However, our results show that it is possible to learn a viscous curl force field without proprioceptive error to drive adaptation, by providing visual information about the position error. Subjects performed reaching movements in a constraining channel created by a robotic interface. The force that subjects applied against the haptic channel was used to predict the unconstrained hand trajectory under a viscous curl force field. This trajectory was provided as visual feedback to the subjects during movement (virtual dynamics). Subjects were able to use this visual information (discrepant with proprioception) and gradually learned to compensate for the virtual dynamics. Unconstrained catch trials, performed without the haptic channel after learning the virtual dynamics, exhibited similar trajectories to those of subjects who learned to move in the force field in the unconstrained environment. Our results demonstrate that the internal model of the external dynamics that was formed through learning without proprioceptive error was accurate enough to allow compensation for the force field in the unconstrained environment. They suggest a method to overcome limitations in learning resulting from mechanical constraints of robotic trainers by providing suitable visual feedback, potentially enabling efficient physical training and rehabilitation using simple robotic devices with few degrees-of-freedom.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Melendez-Calderon</LastName>
<ForeName>Alejandro</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Bioengineering, Imperial College of Science Technology and Medicine, SW72AZ London, UK. amelende@imperial.ac.uk</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Masia</LastName>
<ForeName>Lorenzo</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gassert</LastName>
<ForeName>Roger</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sandini</LastName>
<ForeName>Giulio</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Burdet</LastName>
<ForeName>Etienne</ForeName>
<Initials>E</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>IEEE Trans Neural Syst Rehabil Eng</MedlineTA>
<NlmUniqueID>101097023</NlmUniqueID>
<ISSNLinking>1534-4320</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000223">Adaptation, Psychological</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000328">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000465">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001132">Arm</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001696">Biomechanical Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D056228">Feedback, Sensory</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005260">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006225">Hand</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D007858">Learning</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008297">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008962">Models, Theoretical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009068">Movement</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D010775">Photic Stimulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D011434">Proprioception</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D011597">Psychomotor Performance</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D012371">Robotics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014796">Visual Perception</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D055815">Young Adult</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>6</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>6</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>10</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1109/TNSRE.2011.2125990</ArticleId>
<ArticleId IdType="pubmed">21652280</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Burdet, Etienne" sort="Burdet, Etienne" uniqKey="Burdet E" first="Etienne" last="Burdet">Etienne Burdet</name>
<name sortKey="Gassert, Roger" sort="Gassert, Roger" uniqKey="Gassert R" first="Roger" last="Gassert">Roger Gassert</name>
<name sortKey="Masia, Lorenzo" sort="Masia, Lorenzo" uniqKey="Masia L" first="Lorenzo" last="Masia">Lorenzo Masia</name>
<name sortKey="Sandini, Giulio" sort="Sandini, Giulio" uniqKey="Sandini G" first="Giulio" last="Sandini">Giulio Sandini</name>
</noCountry>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Melendez Calderon, Alejandro" sort="Melendez Calderon, Alejandro" uniqKey="Melendez Calderon A" first="Alejandro" last="Melendez-Calderon">Alejandro Melendez-Calderon</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A75 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 001A75 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:21652280
   |texte=   Force field adaptation can be learned using vision in the absence of proprioceptive error.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:21652280" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024