Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cognitive and cognitive-motor interventions affecting physical functioning: A systematic review

Identifieur interne : 001A74 ( Ncbi/Merge ); précédent : 001A73; suivant : 001A75

Cognitive and cognitive-motor interventions affecting physical functioning: A systematic review

Auteurs : Giuseppe Pichierri [Suisse] ; Peter Wolf [Suisse] ; Kurt Murer [Suisse] ; Eling D. De Bruin [Suisse]

Source :

RBID : PMC:3147016

Abstract

Background

Several types of cognitive or combined cognitive-motor intervention types that might influence physical functions have been proposed in the past: training of dual-tasking abilities, and improving cognitive function through behavioral interventions or the use of computer games. The objective of this systematic review was to examine the literature regarding the use of cognitive and cognitive-motor interventions to improve physical functioning in older adults or people with neurological impairments that are similar to cognitive impairments seen in aging. The aim was to identify potentially promising methods that might be used in future intervention type studies for older adults.

Methods

A systematic search was conducted for the Medline/Premedline, PsycINFO, CINAHL and EMBASE databases. The search was focused on older adults over the age of 65. To increase the number of articles for review, we also included those discussing adult patients with neurological impairments due to trauma, as these cognitive impairments are similar to those seen in the aging population. The search was restricted to English, German and French language literature without any limitation of publication date or restriction by study design. Cognitive or cognitive-motor interventions were defined as dual-tasking, virtual reality exercise, cognitive exercise, or a combination of these.

Results

28 articles met our inclusion criteria. Three articles used an isolated cognitive rehabilitation intervention, seven articles used a dual-task intervention and 19 applied a computerized intervention. There is evidence to suggest that cognitive or motor-cognitive methods positively affects physical functioning, such as postural control, walking abilities and general functions of the upper and lower extremities, respectively. The majority of the included studies resulted in improvements of the assessed functional outcome measures.

Conclusions

The current evidence on the effectiveness of cognitive or motor-cognitive interventions to improve physical functioning in older adults or people with neurological impairments is limited. The heterogeneity of the studies published so far does not allow defining the training methodology with the greatest effectiveness. This review nevertheless provides important foundational information in order to encourage further development of novel cognitive or cognitive-motor interventions, preferably with a randomized control design. Future research that aims to examine the relation between improvements in cognitive skills and the translation to better performance on selected physical tasks should explicitly take the relation between the cognitive and physical skills into account.


Url:
DOI: 10.1186/1471-2318-11-29
PubMed: 21651800
PubMed Central: 3147016

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:3147016

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cognitive and cognitive-motor interventions affecting physical functioning: A systematic review</title>
<author>
<name sortKey="Pichierri, Giuseppe" sort="Pichierri, Giuseppe" uniqKey="Pichierri G" first="Giuseppe" last="Pichierri">Giuseppe Pichierri</name>
<affiliation wicri:level="4">
<nlm:aff id="I1">Institute of Human Movement Sciences and Sport, ETH Zurich, Switzerland</nlm:aff>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Institute of Human Movement Sciences and Sport, ETH Zurich</wicri:regionArea>
<placeName>
<settlement type="city">Zurich</settlement>
<region nuts="3" type="region">Canton de Zurich</region>
</placeName>
<orgName type="university">École polytechnique fédérale de Zurich</orgName>
</affiliation>
</author>
<author>
<name sortKey="Wolf, Peter" sort="Wolf, Peter" uniqKey="Wolf P" first="Peter" last="Wolf">Peter Wolf</name>
<affiliation wicri:level="4">
<nlm:aff id="I2">Department of Mechanical and Process Engineering, ETH Zurich, Switzerland</nlm:aff>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Mechanical and Process Engineering, ETH Zurich</wicri:regionArea>
<placeName>
<settlement type="city">Zurich</settlement>
<region nuts="3" type="region">Canton de Zurich</region>
</placeName>
<orgName type="university">École polytechnique fédérale de Zurich</orgName>
</affiliation>
</author>
<author>
<name sortKey="Murer, Kurt" sort="Murer, Kurt" uniqKey="Murer K" first="Kurt" last="Murer">Kurt Murer</name>
<affiliation wicri:level="4">
<nlm:aff id="I1">Institute of Human Movement Sciences and Sport, ETH Zurich, Switzerland</nlm:aff>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Institute of Human Movement Sciences and Sport, ETH Zurich</wicri:regionArea>
<placeName>
<settlement type="city">Zurich</settlement>
<region nuts="3" type="region">Canton de Zurich</region>
</placeName>
<orgName type="university">École polytechnique fédérale de Zurich</orgName>
</affiliation>
</author>
<author>
<name sortKey="De Bruin, Eling D" sort="De Bruin, Eling D" uniqKey="De Bruin E" first="Eling D" last="De Bruin">Eling D. De Bruin</name>
<affiliation wicri:level="4">
<nlm:aff id="I1">Institute of Human Movement Sciences and Sport, ETH Zurich, Switzerland</nlm:aff>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Institute of Human Movement Sciences and Sport, ETH Zurich</wicri:regionArea>
<placeName>
<settlement type="city">Zurich</settlement>
<region nuts="3" type="region">Canton de Zurich</region>
</placeName>
<orgName type="university">École polytechnique fédérale de Zurich</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">21651800</idno>
<idno type="pmc">3147016</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3147016</idno>
<idno type="RBID">PMC:3147016</idno>
<idno type="doi">10.1186/1471-2318-11-29</idno>
<date when="2011">2011</date>
<idno type="wicri:Area/Pmc/Corpus">001B79</idno>
<idno type="wicri:Area/Pmc/Curation">001B79</idno>
<idno type="wicri:Area/Pmc/Checkpoint">001C17</idno>
<idno type="wicri:Area/Ncbi/Merge">001A74</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Cognitive and cognitive-motor interventions affecting physical functioning: A systematic review</title>
<author>
<name sortKey="Pichierri, Giuseppe" sort="Pichierri, Giuseppe" uniqKey="Pichierri G" first="Giuseppe" last="Pichierri">Giuseppe Pichierri</name>
<affiliation wicri:level="4">
<nlm:aff id="I1">Institute of Human Movement Sciences and Sport, ETH Zurich, Switzerland</nlm:aff>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Institute of Human Movement Sciences and Sport, ETH Zurich</wicri:regionArea>
<placeName>
<settlement type="city">Zurich</settlement>
<region nuts="3" type="region">Canton de Zurich</region>
</placeName>
<orgName type="university">École polytechnique fédérale de Zurich</orgName>
</affiliation>
</author>
<author>
<name sortKey="Wolf, Peter" sort="Wolf, Peter" uniqKey="Wolf P" first="Peter" last="Wolf">Peter Wolf</name>
<affiliation wicri:level="4">
<nlm:aff id="I2">Department of Mechanical and Process Engineering, ETH Zurich, Switzerland</nlm:aff>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Mechanical and Process Engineering, ETH Zurich</wicri:regionArea>
<placeName>
<settlement type="city">Zurich</settlement>
<region nuts="3" type="region">Canton de Zurich</region>
</placeName>
<orgName type="university">École polytechnique fédérale de Zurich</orgName>
</affiliation>
</author>
<author>
<name sortKey="Murer, Kurt" sort="Murer, Kurt" uniqKey="Murer K" first="Kurt" last="Murer">Kurt Murer</name>
<affiliation wicri:level="4">
<nlm:aff id="I1">Institute of Human Movement Sciences and Sport, ETH Zurich, Switzerland</nlm:aff>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Institute of Human Movement Sciences and Sport, ETH Zurich</wicri:regionArea>
<placeName>
<settlement type="city">Zurich</settlement>
<region nuts="3" type="region">Canton de Zurich</region>
</placeName>
<orgName type="university">École polytechnique fédérale de Zurich</orgName>
</affiliation>
</author>
<author>
<name sortKey="De Bruin, Eling D" sort="De Bruin, Eling D" uniqKey="De Bruin E" first="Eling D" last="De Bruin">Eling D. De Bruin</name>
<affiliation wicri:level="4">
<nlm:aff id="I1">Institute of Human Movement Sciences and Sport, ETH Zurich, Switzerland</nlm:aff>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Institute of Human Movement Sciences and Sport, ETH Zurich</wicri:regionArea>
<placeName>
<settlement type="city">Zurich</settlement>
<region nuts="3" type="region">Canton de Zurich</region>
</placeName>
<orgName type="university">École polytechnique fédérale de Zurich</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC Geriatrics</title>
<idno type="eISSN">1471-2318</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec>
<title>Background</title>
<p>Several types of cognitive or combined cognitive-motor intervention types that might influence physical functions have been proposed in the past: training of dual-tasking abilities, and improving cognitive function through behavioral interventions or the use of computer games. The objective of this systematic review was to examine the literature regarding the use of cognitive and cognitive-motor interventions to improve physical functioning in older adults or people with neurological impairments that are similar to cognitive impairments seen in aging. The aim was to identify potentially promising methods that might be used in future intervention type studies for older adults.</p>
</sec>
<sec>
<title>Methods</title>
<p>A systematic search was conducted for the Medline/Premedline, PsycINFO, CINAHL and EMBASE databases. The search was focused on older adults over the age of 65. To increase the number of articles for review, we also included those discussing adult patients with neurological impairments due to trauma, as these cognitive impairments are similar to those seen in the aging population. The search was restricted to English, German and French language literature without any limitation of publication date or restriction by study design. Cognitive or cognitive-motor interventions were defined as dual-tasking, virtual reality exercise, cognitive exercise, or a combination of these.</p>
</sec>
<sec>
<title>Results</title>
<p>28 articles met our inclusion criteria. Three articles used an isolated cognitive rehabilitation intervention, seven articles used a dual-task intervention and 19 applied a computerized intervention. There is evidence to suggest that cognitive or motor-cognitive methods positively affects physical functioning, such as postural control, walking abilities and general functions of the upper and lower extremities, respectively. The majority of the included studies resulted in improvements of the assessed functional outcome measures.</p>
</sec>
<sec>
<title>Conclusions</title>
<p>The current evidence on the effectiveness of cognitive or motor-cognitive interventions to improve physical functioning in older adults or people with neurological impairments is limited. The heterogeneity of the studies published so far does not allow defining the training methodology with the greatest effectiveness. This review nevertheless provides important foundational information in order to encourage further development of novel cognitive or cognitive-motor interventions, preferably with a randomized control design. Future research that aims to examine the relation between improvements in cognitive skills and the translation to better performance on selected physical tasks should explicitly take the relation between the cognitive and physical skills into account.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Woollacott, M" uniqKey="Woollacott M">M Woollacott</name>
</author>
<author>
<name sortKey="Shumway Cook, A" uniqKey="Shumway Cook A">A Shumway-Cook</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hays, Rd" uniqKey="Hays R">RD Hays</name>
</author>
<author>
<name sortKey="Liu, H" uniqKey="Liu H">H Liu</name>
</author>
<author>
<name sortKey="Spritzer, K" uniqKey="Spritzer K">K Spritzer</name>
</author>
<author>
<name sortKey="Cella, D" uniqKey="Cella D">D Cella</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kane, Rl" uniqKey="Kane R">RL Kane</name>
</author>
<author>
<name sortKey="Radosevich, Dm" uniqKey="Radosevich D">DM Radosevich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yogev Seligmann, G" uniqKey="Yogev Seligmann G">G Yogev-Seligmann</name>
</author>
<author>
<name sortKey="Hausdorff, Jm" uniqKey="Hausdorff J">JM Hausdorff</name>
</author>
<author>
<name sortKey="Giladi, N" uniqKey="Giladi N">N Giladi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sherrington, C" uniqKey="Sherrington C">C Sherrington</name>
</author>
<author>
<name sortKey="Whitney, Jc" uniqKey="Whitney J">JC Whitney</name>
</author>
<author>
<name sortKey="Lord, Sr" uniqKey="Lord S">SR Lord</name>
</author>
<author>
<name sortKey="Herbert, Rd" uniqKey="Herbert R">RD Herbert</name>
</author>
<author>
<name sortKey="Cumming, Rg" uniqKey="Cumming R">RG Cumming</name>
</author>
<author>
<name sortKey="Close, Jc" uniqKey="Close J">JC Close</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcdermott, Ay" uniqKey="Mcdermott A">AY McDermott</name>
</author>
<author>
<name sortKey="Mernitz, H" uniqKey="Mernitz H">H Mernitz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Paterson, Dh" uniqKey="Paterson D">DH Paterson</name>
</author>
<author>
<name sortKey="Jones, Gr" uniqKey="Jones G">GR Jones</name>
</author>
<author>
<name sortKey="Rice, Cl" uniqKey="Rice C">CL Rice</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Laessoe, U" uniqKey="Laessoe U">U Laessoe</name>
</author>
<author>
<name sortKey="Hoeck, Hc" uniqKey="Hoeck H">HC Hoeck</name>
</author>
<author>
<name sortKey="Simonsen, O" uniqKey="Simonsen O">O Simonsen</name>
</author>
<author>
<name sortKey="Voigt, M" uniqKey="Voigt M">M Voigt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rapport, Lj" uniqKey="Rapport L">LJ Rapport</name>
</author>
<author>
<name sortKey="Hanks, Ra" uniqKey="Hanks R">RA Hanks</name>
</author>
<author>
<name sortKey="Millis, Sr" uniqKey="Millis S">SR Millis</name>
</author>
<author>
<name sortKey="Deshpande, Sa" uniqKey="Deshpande S">SA Deshpande</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sheridan, Pl" uniqKey="Sheridan P">PL Sheridan</name>
</author>
<author>
<name sortKey="Solomont, J" uniqKey="Solomont J">J Solomont</name>
</author>
<author>
<name sortKey="Kowall, N" uniqKey="Kowall N">N Kowall</name>
</author>
<author>
<name sortKey="Hausdorff, Jm" uniqKey="Hausdorff J">JM Hausdorff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Bruin, Ed" uniqKey="De Bruin E">ED de Bruin</name>
</author>
<author>
<name sortKey="Schmidt, A" uniqKey="Schmidt A">A Schmidt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bryan, J" uniqKey="Bryan J">J Bryan</name>
</author>
<author>
<name sortKey="Luszcz, Ma" uniqKey="Luszcz M">MA Luszcz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shallice, T" uniqKey="Shallice T">T Shallice</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cicerone, K" uniqKey="Cicerone K">K Cicerone</name>
</author>
<author>
<name sortKey="Levin, H" uniqKey="Levin H">H Levin</name>
</author>
<author>
<name sortKey="Malec, J" uniqKey="Malec J">J Malec</name>
</author>
<author>
<name sortKey="Stuss, D" uniqKey="Stuss D">D Stuss</name>
</author>
<author>
<name sortKey="Whyte, J" uniqKey="Whyte J">J Whyte</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rosano, C" uniqKey="Rosano C">C Rosano</name>
</author>
<author>
<name sortKey="Aizenstein, H" uniqKey="Aizenstein H">H Aizenstein</name>
</author>
<author>
<name sortKey="Cochran, J" uniqKey="Cochran J">J Cochran</name>
</author>
<author>
<name sortKey="Saxton, J" uniqKey="Saxton J">J Saxton</name>
</author>
<author>
<name sortKey="De Kosky, S" uniqKey="De Kosky S">S De Kosky</name>
</author>
<author>
<name sortKey="Newman, Ab" uniqKey="Newman A">AB Newman</name>
</author>
<author>
<name sortKey="Kuller, Lh" uniqKey="Kuller L">LH Kuller</name>
</author>
<author>
<name sortKey="Lopez, Ol" uniqKey="Lopez O">OL Lopez</name>
</author>
<author>
<name sortKey="Carter, Cs" uniqKey="Carter C">CS Carter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scherder, E" uniqKey="Scherder E">E Scherder</name>
</author>
<author>
<name sortKey="Eggermont, L" uniqKey="Eggermont L">L Eggermont</name>
</author>
<author>
<name sortKey="Visscher, C" uniqKey="Visscher C">C Visscher</name>
</author>
<author>
<name sortKey="Scheltens, P" uniqKey="Scheltens P">P Scheltens</name>
</author>
<author>
<name sortKey="Swaab, D" uniqKey="Swaab D">D swaab</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Bruin, Ed" uniqKey="De Bruin E">ED de Bruin</name>
</author>
<author>
<name sortKey="Schoene, D" uniqKey="Schoene D">D Schoene</name>
</author>
<author>
<name sortKey="Pichierri, G" uniqKey="Pichierri G">G Pichierri</name>
</author>
<author>
<name sortKey="Smith, St" uniqKey="Smith S">ST Smith</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harley, Jp" uniqKey="Harley J">JP Harley</name>
</author>
<author>
<name sortKey="Allen, C" uniqKey="Allen C">C Allen</name>
</author>
<author>
<name sortKey="Braciszewski, Tl" uniqKey="Braciszewski T">TL Braciszewski</name>
</author>
<author>
<name sortKey="Cicerone, Kd" uniqKey="Cicerone K">KD Cicerone</name>
</author>
<author>
<name sortKey="Dahlberg, C" uniqKey="Dahlberg C">C Dahlberg</name>
</author>
<author>
<name sortKey="Evans, S" uniqKey="Evans S">S Evans</name>
</author>
<author>
<name sortKey="Foto, M" uniqKey="Foto M">M Foto</name>
</author>
<author>
<name sortKey="Gordon, Wa" uniqKey="Gordon W">WA Gordon</name>
</author>
<author>
<name sortKey="Harrington, D" uniqKey="Harrington D">D Harrington</name>
</author>
<author>
<name sortKey="Levin, W" uniqKey="Levin W">W Levin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cicerone, Kd" uniqKey="Cicerone K">KD Cicerone</name>
</author>
<author>
<name sortKey="Dahlberg, C" uniqKey="Dahlberg C">C Dahlberg</name>
</author>
<author>
<name sortKey="Malec, Jf" uniqKey="Malec J">JF Malec</name>
</author>
<author>
<name sortKey="Langenbahn, Dm" uniqKey="Langenbahn D">DM Langenbahn</name>
</author>
<author>
<name sortKey="Felicetti, T" uniqKey="Felicetti T">T Felicetti</name>
</author>
<author>
<name sortKey="Kneipp, S" uniqKey="Kneipp S">S Kneipp</name>
</author>
<author>
<name sortKey="Ellmo, W" uniqKey="Ellmo W">W Ellmo</name>
</author>
<author>
<name sortKey="Kalmar, K" uniqKey="Kalmar K">K Kalmar</name>
</author>
<author>
<name sortKey="Giacino, Jt" uniqKey="Giacino J">JT Giacino</name>
</author>
<author>
<name sortKey="Harley, Jp" uniqKey="Harley J">JP Harley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rohling, Ml" uniqKey="Rohling M">ML Rohling</name>
</author>
<author>
<name sortKey="Faust, Me" uniqKey="Faust M">ME Faust</name>
</author>
<author>
<name sortKey="Beverly, B" uniqKey="Beverly B">B Beverly</name>
</author>
<author>
<name sortKey="Demakis, G" uniqKey="Demakis G">G Demakis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Acevedo, A" uniqKey="Acevedo A">A Acevedo</name>
</author>
<author>
<name sortKey="Loewenstein, Da" uniqKey="Loewenstein D">DA Loewenstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jobe, Jb" uniqKey="Jobe J">JB Jobe</name>
</author>
<author>
<name sortKey="Smith, Dm" uniqKey="Smith D">DM Smith</name>
</author>
<author>
<name sortKey="Ball, K" uniqKey="Ball K">K Ball</name>
</author>
<author>
<name sortKey="Tennstedt, Sl" uniqKey="Tennstedt S">SL Tennstedt</name>
</author>
<author>
<name sortKey="Marsiske, M" uniqKey="Marsiske M">M Marsiske</name>
</author>
<author>
<name sortKey="Willis, Sl" uniqKey="Willis S">SL Willis</name>
</author>
<author>
<name sortKey="Rebok, Gw" uniqKey="Rebok G">GW Rebok</name>
</author>
<author>
<name sortKey="Morris, Jn" uniqKey="Morris J">JN Morris</name>
</author>
<author>
<name sortKey="Helmers, Kf" uniqKey="Helmers K">KF Helmers</name>
</author>
<author>
<name sortKey="Leveck, Md" uniqKey="Leveck M">MD Leveck</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Faucounau, V" uniqKey="Faucounau V">V Faucounau</name>
</author>
<author>
<name sortKey="Wu, Yh" uniqKey="Wu Y">YH Wu</name>
</author>
<author>
<name sortKey="Boulay, M" uniqKey="Boulay M">M Boulay</name>
</author>
<author>
<name sortKey="De Rotrou, J" uniqKey="De Rotrou J">J De Rotrou</name>
</author>
<author>
<name sortKey="Rigaud, As" uniqKey="Rigaud A">AS Rigaud</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thornton, Ke" uniqKey="Thornton K">KE Thornton</name>
</author>
<author>
<name sortKey="Carmody, Dp" uniqKey="Carmody D">DP Carmody</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcewen, Se" uniqKey="Mcewen S">SE McEwen</name>
</author>
<author>
<name sortKey="Huijbregts, Mp" uniqKey="Huijbregts M">MP Huijbregts</name>
</author>
<author>
<name sortKey="Ryan, Jd" uniqKey="Ryan J">JD Ryan</name>
</author>
<author>
<name sortKey="Polatajko, Hj" uniqKey="Polatajko H">HJ Polatajko</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brown, La" uniqKey="Brown L">LA Brown</name>
</author>
<author>
<name sortKey="Shumway Cook, A" uniqKey="Shumway Cook A">A Shumway-Cook</name>
</author>
<author>
<name sortKey="Woollacott, Mh" uniqKey="Woollacott M">MH Woollacott</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maylor, Ea" uniqKey="Maylor E">EA Maylor</name>
</author>
<author>
<name sortKey="Allison, S" uniqKey="Allison S">S Allison</name>
</author>
<author>
<name sortKey="Wing, Am" uniqKey="Wing A">AM Wing</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haggard, P" uniqKey="Haggard P">P Haggard</name>
</author>
<author>
<name sortKey="Cockburn, J" uniqKey="Cockburn J">J Cockburn</name>
</author>
<author>
<name sortKey="Cock, J" uniqKey="Cock J">J Cock</name>
</author>
<author>
<name sortKey="Fordham, C" uniqKey="Fordham C">C Fordham</name>
</author>
<author>
<name sortKey="Wade, D" uniqKey="Wade D">D Wade</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcculloch, K" uniqKey="Mcculloch K">K McCulloch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Camicioli, R" uniqKey="Camicioli R">R Camicioli</name>
</author>
<author>
<name sortKey="Howieson, D" uniqKey="Howieson D">D Howieson</name>
</author>
<author>
<name sortKey="Lehman, S" uniqKey="Lehman S">S Lehman</name>
</author>
<author>
<name sortKey="Kaye, J" uniqKey="Kaye J">J Kaye</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pellecchia, Gl" uniqKey="Pellecchia G">GL Pellecchia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bisson, E" uniqKey="Bisson E">E Bisson</name>
</author>
<author>
<name sortKey="Contant, B" uniqKey="Contant B">B Contant</name>
</author>
<author>
<name sortKey="Sveistrup, H" uniqKey="Sveistrup H">H Sveistrup</name>
</author>
<author>
<name sortKey="Lajoie, Y" uniqKey="Lajoie Y">Y Lajoie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sveistrup, H" uniqKey="Sveistrup H">H Sveistrup</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zelinski, Em" uniqKey="Zelinski E">EM Zelinski</name>
</author>
<author>
<name sortKey="Reyes, R" uniqKey="Reyes R">R Reyes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bashore, Tr" uniqKey="Bashore T">TR Bashore</name>
</author>
<author>
<name sortKey="Ridderinkhof, Kr" uniqKey="Ridderinkhof K">KR Ridderinkhof</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hinkebein, Jh" uniqKey="Hinkebein J">JH Hinkebein</name>
</author>
<author>
<name sortKey="Martin, Ta" uniqKey="Martin T">TA Martin</name>
</author>
<author>
<name sortKey="Callahan, Cd" uniqKey="Callahan C">CD Callahan</name>
</author>
<author>
<name sortKey="Johnstone, B" uniqKey="Johnstone B">B Johnstone</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goldstein, G" uniqKey="Goldstein G">G Goldstein</name>
</author>
<author>
<name sortKey="Shelly, Ch" uniqKey="Shelly C">CH Shelly</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcdowd, Jm" uniqKey="Mcdowd J">JM McDowd</name>
</author>
<author>
<name sortKey="Filion, Dl" uniqKey="Filion D">DL Filion</name>
</author>
<author>
<name sortKey="Pohl, Ps" uniqKey="Pohl P">PS Pohl</name>
</author>
<author>
<name sortKey="Richards, Lg" uniqKey="Richards L">LG Richards</name>
</author>
<author>
<name sortKey="Stiers, W" uniqKey="Stiers W">W Stiers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Broglio, Sp" uniqKey="Broglio S">SP Broglio</name>
</author>
<author>
<name sortKey="Tomporowski, Pd" uniqKey="Tomporowski P">PD Tomporowski</name>
</author>
<author>
<name sortKey="Ferrara, Ms" uniqKey="Ferrara M">MS Ferrara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Parker, Tm" uniqKey="Parker T">TM Parker</name>
</author>
<author>
<name sortKey="Osternig, Lr" uniqKey="Osternig L">LR Osternig</name>
</author>
<author>
<name sortKey="Van Donkelaar, P" uniqKey="Van Donkelaar P">P van Donkelaar</name>
</author>
<author>
<name sortKey="Chou, Ls" uniqKey="Chou L">LS Chou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Downs, Sh" uniqKey="Downs S">SH Downs</name>
</author>
<author>
<name sortKey="Black, N" uniqKey="Black N">N Black</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Landis, Jr" uniqKey="Landis J">JR Landis</name>
</author>
<author>
<name sortKey="Koch, Gg" uniqKey="Koch G">GG Koch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liberati, A" uniqKey="Liberati A">A Liberati</name>
</author>
<author>
<name sortKey="Altman, Dg" uniqKey="Altman D">DG Altman</name>
</author>
<author>
<name sortKey="Tetzlaff, J" uniqKey="Tetzlaff J">J Tetzlaff</name>
</author>
<author>
<name sortKey="Mulrow, C" uniqKey="Mulrow C">C Mulrow</name>
</author>
<author>
<name sortKey="Gotzsche, Pc" uniqKey="Gotzsche P">PC Gotzsche</name>
</author>
<author>
<name sortKey="Ioannidis, Jp" uniqKey="Ioannidis J">JP Ioannidis</name>
</author>
<author>
<name sortKey="Clarke, M" uniqKey="Clarke M">M Clarke</name>
</author>
<author>
<name sortKey="Devereaux, Pj" uniqKey="Devereaux P">PJ Devereaux</name>
</author>
<author>
<name sortKey="Kleijnen, J" uniqKey="Kleijnen J">J Kleijnen</name>
</author>
<author>
<name sortKey="Moher, D" uniqKey="Moher D">D Moher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Batson, G" uniqKey="Batson G">G Batson</name>
</author>
<author>
<name sortKey="Feltman, R" uniqKey="Feltman R">R Feltman</name>
</author>
<author>
<name sortKey="Mcbride, C" uniqKey="Mcbride C">C McBride</name>
</author>
<author>
<name sortKey="Waring, J" uniqKey="Waring J">J Waring</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Broeren, J" uniqKey="Broeren J">J Broeren</name>
</author>
<author>
<name sortKey="Claesson, L" uniqKey="Claesson L">L Claesson</name>
</author>
<author>
<name sortKey="Goude, D" uniqKey="Goude D">D Goude</name>
</author>
<author>
<name sortKey="Rydmark, M" uniqKey="Rydmark M">M Rydmark</name>
</author>
<author>
<name sortKey="Sunnerhagen, Ks" uniqKey="Sunnerhagen K">KS Sunnerhagen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Buccello Stout, Rr" uniqKey="Buccello Stout R">RR Buccello-Stout</name>
</author>
<author>
<name sortKey="Bloomberg, Jj" uniqKey="Bloomberg J">JJ Bloomberg</name>
</author>
<author>
<name sortKey="Cohen, Hs" uniqKey="Cohen H">HS Cohen</name>
</author>
<author>
<name sortKey="Whorton, Eb" uniqKey="Whorton E">EB Whorton</name>
</author>
<author>
<name sortKey="Weaver, Gd" uniqKey="Weaver G">GD Weaver</name>
</author>
<author>
<name sortKey="Cromwell, Rl" uniqKey="Cromwell R">RL Cromwell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Clark, R" uniqKey="Clark R">R Clark</name>
</author>
<author>
<name sortKey="Kraemer, T" uniqKey="Kraemer T">T Kraemer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Bruin, E" uniqKey="De Bruin E">E de Bruin</name>
</author>
<author>
<name sortKey="Dorflinger, M" uniqKey="Dorflinger M">M Dörflinger</name>
</author>
<author>
<name sortKey="Reith, A" uniqKey="Reith A">A Reith</name>
</author>
<author>
<name sortKey="Murer, K" uniqKey="Murer K">K Murer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deutsch, J" uniqKey="Deutsch J">J Deutsch</name>
</author>
<author>
<name sortKey="Robbins, D" uniqKey="Robbins D">D Robbins</name>
</author>
<author>
<name sortKey="Morrison, J" uniqKey="Morrison J">J Morrison</name>
</author>
<author>
<name sortKey="Guarrera Bowlby, P" uniqKey="Guarrera Bowlby P">P Guarrera Bowlby</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dunsky, A" uniqKey="Dunsky A">A Dunsky</name>
</author>
<author>
<name sortKey="Dickstein, R" uniqKey="Dickstein R">R Dickstein</name>
</author>
<author>
<name sortKey="Marcovitz, E" uniqKey="Marcovitz E">E Marcovitz</name>
</author>
<author>
<name sortKey="Levy, S" uniqKey="Levy S">S Levy</name>
</author>
<author>
<name sortKey="Deutsch, J" uniqKey="Deutsch J">J Deutsch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hamel, Mf" uniqKey="Hamel M">MF Hamel</name>
</author>
<author>
<name sortKey="Lajoie, Y" uniqKey="Lajoie Y">Y Lajoie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hatzitaki, V" uniqKey="Hatzitaki V">V Hatzitaki</name>
</author>
<author>
<name sortKey="Amiridis, Ig" uniqKey="Amiridis I">IG Amiridis</name>
</author>
<author>
<name sortKey="Nikodelis, T" uniqKey="Nikodelis T">T Nikodelis</name>
</author>
<author>
<name sortKey="Spiliopoulou, S" uniqKey="Spiliopoulou S">S Spiliopoulou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hinman, Mr" uniqKey="Hinman M">MR Hinman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jang, Sh" uniqKey="Jang S">SH Jang</name>
</author>
<author>
<name sortKey="You, Sh" uniqKey="You S">SH You</name>
</author>
<author>
<name sortKey="Hallett, M" uniqKey="Hallett M">M Hallett</name>
</author>
<author>
<name sortKey="Cho, Yw" uniqKey="Cho Y">YW Cho</name>
</author>
<author>
<name sortKey="Park, C" uniqKey="Park C">C Park</name>
</author>
<author>
<name sortKey="Cho, S" uniqKey="Cho S">S Cho</name>
</author>
<author>
<name sortKey="Lee, H" uniqKey="Lee H">H Lee</name>
</author>
<author>
<name sortKey="Kim, T" uniqKey="Kim T">T Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lajoie, Y" uniqKey="Lajoie Y">Y Lajoie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mumford, N" uniqKey="Mumford N">N Mumford</name>
</author>
<author>
<name sortKey="Duckworth, J" uniqKey="Duckworth J">J Duckworth</name>
</author>
<author>
<name sortKey="Thomas, Pr" uniqKey="Thomas P">PR Thomas</name>
</author>
<author>
<name sortKey="Shum, D" uniqKey="Shum D">D Shum</name>
</author>
<author>
<name sortKey="Williams, G" uniqKey="Williams G">G Williams</name>
</author>
<author>
<name sortKey="Wilson, Ph" uniqKey="Wilson P">PH Wilson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sackley, Cm" uniqKey="Sackley C">CM Sackley</name>
</author>
<author>
<name sortKey="Lincoln, Nb" uniqKey="Lincoln N">NB Lincoln</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shigematsu, R" uniqKey="Shigematsu R">R Shigematsu</name>
</author>
<author>
<name sortKey="Okura, T" uniqKey="Okura T">T Okura</name>
</author>
<author>
<name sortKey="Nakagaichi, M" uniqKey="Nakagaichi M">M Nakagaichi</name>
</author>
<author>
<name sortKey="Tanaka, K" uniqKey="Tanaka K">K Tanaka</name>
</author>
<author>
<name sortKey="Sakai, T" uniqKey="Sakai T">T Sakai</name>
</author>
<author>
<name sortKey="Kitazumi, S" uniqKey="Kitazumi S">S Kitazumi</name>
</author>
<author>
<name sortKey="Rantanen, T" uniqKey="Rantanen T">T Rantanen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shigematsu, R" uniqKey="Shigematsu R">R Shigematsu</name>
</author>
<author>
<name sortKey="Okura, T" uniqKey="Okura T">T Okura</name>
</author>
<author>
<name sortKey="Sakai, T" uniqKey="Sakai T">T Sakai</name>
</author>
<author>
<name sortKey="Rantanen, T" uniqKey="Rantanen T">T Rantanen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Silsupadol, P" uniqKey="Silsupadol P">P Silsupadol</name>
</author>
<author>
<name sortKey="Lugade, V" uniqKey="Lugade V">V Lugade</name>
</author>
<author>
<name sortKey="Shumway Cook, A" uniqKey="Shumway Cook A">A Shumway-Cook</name>
</author>
<author>
<name sortKey="Van Donkelaar, P" uniqKey="Van Donkelaar P">P van Donkelaar</name>
</author>
<author>
<name sortKey="Chou, Ls" uniqKey="Chou L">LS Chou</name>
</author>
<author>
<name sortKey="Mayr, U" uniqKey="Mayr U">U Mayr</name>
</author>
<author>
<name sortKey="Woollacott, Mh" uniqKey="Woollacott M">MH Woollacott</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Silsupadol, P" uniqKey="Silsupadol P">P Silsupadol</name>
</author>
<author>
<name sortKey="Shumway Cook, A" uniqKey="Shumway Cook A">A Shumway-Cook</name>
</author>
<author>
<name sortKey="Lugade, V" uniqKey="Lugade V">V Lugade</name>
</author>
<author>
<name sortKey="Van Donkelaar, P" uniqKey="Van Donkelaar P">P van Donkelaar</name>
</author>
<author>
<name sortKey="Chou, Ls" uniqKey="Chou L">LS Chou</name>
</author>
<author>
<name sortKey="Mayr, U" uniqKey="Mayr U">U Mayr</name>
</author>
<author>
<name sortKey="Woollacott, Mh" uniqKey="Woollacott M">MH Woollacott</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Silsupadol, P" uniqKey="Silsupadol P">P Silsupadol</name>
</author>
<author>
<name sortKey="Siu, Kc" uniqKey="Siu K">KC Siu</name>
</author>
<author>
<name sortKey="Shumway Cook, A" uniqKey="Shumway Cook A">A Shumway-Cook</name>
</author>
<author>
<name sortKey="Woollacott, Mh" uniqKey="Woollacott M">MH Woollacott</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Srivastava, A" uniqKey="Srivastava A">A Srivastava</name>
</author>
<author>
<name sortKey="Taly, Ab" uniqKey="Taly A">AB Taly</name>
</author>
<author>
<name sortKey="Gupta, A" uniqKey="Gupta A">A Gupta</name>
</author>
<author>
<name sortKey="Kumar, S" uniqKey="Kumar S">S Kumar</name>
</author>
<author>
<name sortKey="Murali, T" uniqKey="Murali T">T Murali</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sugarman, H" uniqKey="Sugarman H">H Sugarman</name>
</author>
<author>
<name sortKey="Weisel Eichler, A" uniqKey="Weisel Eichler A">A Weisel-Eichler</name>
</author>
<author>
<name sortKey="Burstin, A" uniqKey="Burstin A">A Burstin</name>
</author>
<author>
<name sortKey="Brown, R" uniqKey="Brown R">R Brown</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Talassi, E" uniqKey="Talassi E">E Talassi</name>
</author>
<author>
<name sortKey="Guerreschi, M" uniqKey="Guerreschi M">M Guerreschi</name>
</author>
<author>
<name sortKey="Feriani, M" uniqKey="Feriani M">M Feriani</name>
</author>
<author>
<name sortKey="Fedi, V" uniqKey="Fedi V">V Fedi</name>
</author>
<author>
<name sortKey="Bianchetti, A" uniqKey="Bianchetti A">A Bianchetti</name>
</author>
<author>
<name sortKey="Trabucchi, M" uniqKey="Trabucchi M">M Trabucchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vaillant, J" uniqKey="Vaillant J">J Vaillant</name>
</author>
<author>
<name sortKey="Vuillerme, N" uniqKey="Vuillerme N">N Vuillerme</name>
</author>
<author>
<name sortKey="Martigne, P" uniqKey="Martigne P">P Martigne</name>
</author>
<author>
<name sortKey="Caillat Miousse, Jl" uniqKey="Caillat Miousse J">JL Caillat-Miousse</name>
</author>
<author>
<name sortKey="Parisot, J" uniqKey="Parisot J">J Parisot</name>
</author>
<author>
<name sortKey="Nougier, V" uniqKey="Nougier V">V Nougier</name>
</author>
<author>
<name sortKey="Juvin, R" uniqKey="Juvin R">R Juvin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wolf, Sl" uniqKey="Wolf S">SL Wolf</name>
</author>
<author>
<name sortKey="Barnhart, Hx" uniqKey="Barnhart H">HX Barnhart</name>
</author>
<author>
<name sortKey="Ellison, Gl" uniqKey="Ellison G">GL Ellison</name>
</author>
<author>
<name sortKey="Coogler, Ce" uniqKey="Coogler C">CE Coogler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Yr" uniqKey="Yang Y">YR Yang</name>
</author>
<author>
<name sortKey="Tsai, Mp" uniqKey="Tsai M">MP Tsai</name>
</author>
<author>
<name sortKey="Chuang, Ty" uniqKey="Chuang T">TY Chuang</name>
</author>
<author>
<name sortKey="Sung, Wh" uniqKey="Sung W">WH Sung</name>
</author>
<author>
<name sortKey="Wang, Ry" uniqKey="Wang R">RY Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yong Joo, L" uniqKey="Yong Joo L">L Yong Joo</name>
</author>
<author>
<name sortKey="Soon Yin, T" uniqKey="Soon Yin T">T Soon Yin</name>
</author>
<author>
<name sortKey="Xu, D" uniqKey="Xu D">D Xu</name>
</author>
<author>
<name sortKey="Thia, E" uniqKey="Thia E">E Thia</name>
</author>
<author>
<name sortKey="Pei Fen, C" uniqKey="Pei Fen C">C Pei Fen</name>
</author>
<author>
<name sortKey="Kuah, Cwk" uniqKey="Kuah C">CWK Kuah</name>
</author>
<author>
<name sortKey="Kong, Kh" uniqKey="Kong K">KH Kong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="You, Jh" uniqKey="You J">JH You</name>
</author>
<author>
<name sortKey="Shetty, A" uniqKey="Shetty A">A Shetty</name>
</author>
<author>
<name sortKey="Jones, T" uniqKey="Jones T">T Jones</name>
</author>
<author>
<name sortKey="Shields, K" uniqKey="Shields K">K Shields</name>
</author>
<author>
<name sortKey="Belay, Y" uniqKey="Belay Y">Y Belay</name>
</author>
<author>
<name sortKey="Brown, D" uniqKey="Brown D">D Brown</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kerdoncuff, V" uniqKey="Kerdoncuff V">V Kerdoncuff</name>
</author>
<author>
<name sortKey="Durufle, A" uniqKey="Durufle A">A Durufle</name>
</author>
<author>
<name sortKey="Petrilli, S" uniqKey="Petrilli S">S Petrilli</name>
</author>
<author>
<name sortKey="Nicolas, B" uniqKey="Nicolas B">B Nicolas</name>
</author>
<author>
<name sortKey="Robineau, S" uniqKey="Robineau S">S Robineau</name>
</author>
<author>
<name sortKey="Lassalle, A" uniqKey="Lassalle A">A Lassalle</name>
</author>
<author>
<name sortKey="Le Tallec, H" uniqKey="Le Tallec H">H Le Tallec</name>
</author>
<author>
<name sortKey="Ramanantsitonta, J" uniqKey="Ramanantsitonta J">J Ramanantsitonta</name>
</author>
<author>
<name sortKey="Gallien, P" uniqKey="Gallien P">P Gallien</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tonetta, M" uniqKey="Tonetta M">M Tonetta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tonetta, M" uniqKey="Tonetta M">M Tonetta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reuben, Db" uniqKey="Reuben D">DB Reuben</name>
</author>
<author>
<name sortKey="Siu, Al" uniqKey="Siu A">AL Siu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mulder, T" uniqKey="Mulder T">T Mulder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ehrsson, Hh" uniqKey="Ehrsson H">HH Ehrsson</name>
</author>
<author>
<name sortKey="Geyer, S" uniqKey="Geyer S">S Geyer</name>
</author>
<author>
<name sortKey="Naito, E" uniqKey="Naito E">E Naito</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mulder, T" uniqKey="Mulder T">T Mulder</name>
</author>
<author>
<name sortKey="De Vries, S" uniqKey="De Vries S">S de Vries</name>
</author>
<author>
<name sortKey="Zijlstra, S" uniqKey="Zijlstra S">S Zijlstra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hardy, Se" uniqKey="Hardy S">SE Hardy</name>
</author>
<author>
<name sortKey="Perera, S" uniqKey="Perera S">S Perera</name>
</author>
<author>
<name sortKey="Roumani, Yf" uniqKey="Roumani Y">YF Roumani</name>
</author>
<author>
<name sortKey="Chandler, Jm" uniqKey="Chandler J">JM Chandler</name>
</author>
<author>
<name sortKey="Studenski, Sa" uniqKey="Studenski S">SA Studenski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Perrin, Pp" uniqKey="Perrin P">PP Perrin</name>
</author>
<author>
<name sortKey="Jeandel, C" uniqKey="Jeandel C">C Jeandel</name>
</author>
<author>
<name sortKey="Perrin, Ca" uniqKey="Perrin C">CA Perrin</name>
</author>
<author>
<name sortKey="Bene, Mc" uniqKey="Bene M">MC Bene</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cross, Es" uniqKey="Cross E">ES Cross</name>
</author>
<author>
<name sortKey="Kraemer, Dj" uniqKey="Kraemer D">DJ Kraemer</name>
</author>
<author>
<name sortKey="Hamilton, Af" uniqKey="Hamilton A">AF Hamilton</name>
</author>
<author>
<name sortKey="Kelley, Wm" uniqKey="Kelley W">WM Kelley</name>
</author>
<author>
<name sortKey="Grafton, St" uniqKey="Grafton S">ST Grafton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="You, Sh" uniqKey="You S">SH You</name>
</author>
<author>
<name sortKey="Jang, Sh" uniqKey="Jang S">SH Jang</name>
</author>
<author>
<name sortKey="Kim, Yh" uniqKey="Kim Y">YH Kim</name>
</author>
<author>
<name sortKey="Hallett, M" uniqKey="Hallett M">M Hallett</name>
</author>
<author>
<name sortKey="Ahn, Sh" uniqKey="Ahn S">SH Ahn</name>
</author>
<author>
<name sortKey="Kwon, Yh" uniqKey="Kwon Y">YH Kwon</name>
</author>
<author>
<name sortKey="Kim, Jh" uniqKey="Kim J">JH Kim</name>
</author>
<author>
<name sortKey="Lee, My" uniqKey="Lee M">MY Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Holden, Mk" uniqKey="Holden M">MK Holden</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kizony, R" uniqKey="Kizony R">R Kizony</name>
</author>
<author>
<name sortKey="Raz, L" uniqKey="Raz L">L Raz</name>
</author>
<author>
<name sortKey="Katz, N" uniqKey="Katz N">N Katz</name>
</author>
<author>
<name sortKey="Weingarden, H" uniqKey="Weingarden H">H Weingarden</name>
</author>
<author>
<name sortKey="Weiss, Pl" uniqKey="Weiss P">PL Weiss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Holden, Mk" uniqKey="Holden M">MK Holden</name>
</author>
<author>
<name sortKey="Todorov, E" uniqKey="Todorov E">E Todorov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sanchez Vives, Mv" uniqKey="Sanchez Vives M">MV Sanchez-Vives</name>
</author>
<author>
<name sortKey="Slater, M" uniqKey="Slater M">M Slater</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hogan, M" uniqKey="Hogan M">M Hogan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rosano, C" uniqKey="Rosano C">C Rosano</name>
</author>
<author>
<name sortKey="Aizenstein, H" uniqKey="Aizenstein H">H Aizenstein</name>
</author>
<author>
<name sortKey="Brach, J" uniqKey="Brach J">J Brach</name>
</author>
<author>
<name sortKey="Longenberger, A" uniqKey="Longenberger A">A Longenberger</name>
</author>
<author>
<name sortKey="Studenski, S" uniqKey="Studenski S">S Studenski</name>
</author>
<author>
<name sortKey="Newman, Ab" uniqKey="Newman A">AB Newman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yan, J" uniqKey="Yan J">J Yan</name>
</author>
<author>
<name sortKey="Zhou, C" uniqKey="Zhou C">C Zhou</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">BMC Geriatr</journal-id>
<journal-title-group>
<journal-title>BMC Geriatrics</journal-title>
</journal-title-group>
<issn pub-type="epub">1471-2318</issn>
<publisher>
<publisher-name>BioMed Central</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">21651800</article-id>
<article-id pub-id-type="pmc">3147016</article-id>
<article-id pub-id-type="publisher-id">1471-2318-11-29</article-id>
<article-id pub-id-type="doi">10.1186/1471-2318-11-29</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Cognitive and cognitive-motor interventions affecting physical functioning: A systematic review</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes" id="A1">
<name>
<surname>Pichierri</surname>
<given-names>Giuseppe</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<email>pichierri@move.biol.ethz.ch</email>
</contrib>
<contrib contrib-type="author" id="A2">
<name>
<surname>Wolf</surname>
<given-names>Peter</given-names>
</name>
<xref ref-type="aff" rid="I2">2</xref>
<email>wolf@mavt.ethz.ch</email>
</contrib>
<contrib contrib-type="author" id="A3">
<name>
<surname>Murer</surname>
<given-names>Kurt</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<email>murer@move.biol.ethz.ch</email>
</contrib>
<contrib contrib-type="author" id="A4">
<name>
<surname>de Bruin</surname>
<given-names>Eling D</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<email>debruin@move.biol.ethz.ch</email>
</contrib>
</contrib-group>
<aff id="I1">
<label>1</label>
Institute of Human Movement Sciences and Sport, ETH Zurich, Switzerland</aff>
<aff id="I2">
<label>2</label>
Department of Mechanical and Process Engineering, ETH Zurich, Switzerland</aff>
<pub-date pub-type="collection">
<year>2011</year>
</pub-date>
<pub-date pub-type="epub">
<day>8</day>
<month>6</month>
<year>2011</year>
</pub-date>
<volume>11</volume>
<fpage>29</fpage>
<lpage>29</lpage>
<history>
<date date-type="received">
<day>17</day>
<month>11</month>
<year>2010</year>
</date>
<date date-type="accepted">
<day>8</day>
<month>6</month>
<year>2011</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright ©2011 Pichierri et al; licensee BioMed Central Ltd.</copyright-statement>
<copyright-year>2011</copyright-year>
<copyright-holder>Pichierri et al; licensee BioMed Central Ltd.</copyright-holder>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/2.0">
<license-p>This is an Open Access article distributed under the terms of the Creative Commons Attribution License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/2.0">http://creativecommons.org/licenses/by/2.0</ext-link>
), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<self-uri xlink:href="http://www.biomedcentral.com/1471-2318/11/29"></self-uri>
<abstract>
<sec>
<title>Background</title>
<p>Several types of cognitive or combined cognitive-motor intervention types that might influence physical functions have been proposed in the past: training of dual-tasking abilities, and improving cognitive function through behavioral interventions or the use of computer games. The objective of this systematic review was to examine the literature regarding the use of cognitive and cognitive-motor interventions to improve physical functioning in older adults or people with neurological impairments that are similar to cognitive impairments seen in aging. The aim was to identify potentially promising methods that might be used in future intervention type studies for older adults.</p>
</sec>
<sec>
<title>Methods</title>
<p>A systematic search was conducted for the Medline/Premedline, PsycINFO, CINAHL and EMBASE databases. The search was focused on older adults over the age of 65. To increase the number of articles for review, we also included those discussing adult patients with neurological impairments due to trauma, as these cognitive impairments are similar to those seen in the aging population. The search was restricted to English, German and French language literature without any limitation of publication date or restriction by study design. Cognitive or cognitive-motor interventions were defined as dual-tasking, virtual reality exercise, cognitive exercise, or a combination of these.</p>
</sec>
<sec>
<title>Results</title>
<p>28 articles met our inclusion criteria. Three articles used an isolated cognitive rehabilitation intervention, seven articles used a dual-task intervention and 19 applied a computerized intervention. There is evidence to suggest that cognitive or motor-cognitive methods positively affects physical functioning, such as postural control, walking abilities and general functions of the upper and lower extremities, respectively. The majority of the included studies resulted in improvements of the assessed functional outcome measures.</p>
</sec>
<sec>
<title>Conclusions</title>
<p>The current evidence on the effectiveness of cognitive or motor-cognitive interventions to improve physical functioning in older adults or people with neurological impairments is limited. The heterogeneity of the studies published so far does not allow defining the training methodology with the greatest effectiveness. This review nevertheless provides important foundational information in order to encourage further development of novel cognitive or cognitive-motor interventions, preferably with a randomized control design. Future research that aims to examine the relation between improvements in cognitive skills and the translation to better performance on selected physical tasks should explicitly take the relation between the cognitive and physical skills into account.</p>
</sec>
</abstract>
</article-meta>
</front>
<body>
<sec>
<title>Background</title>
<p>Age-related deteriorations in physical functioning have been attributed to decreases in sensory or motor system function [
<xref ref-type="bibr" rid="B1">1</xref>
]. Physical functioning refers to the ability to conduct a variety of activities ranging from self-care (instrumental activities of daily living) to more challenging mobility tasks that require balance abilities, strength or endurance, e.g. walking or standing, important for achieving or maintaining an independent way of living [
<xref ref-type="bibr" rid="B2">2</xref>
,
<xref ref-type="bibr" rid="B3">3</xref>
]. Until recently, for example, gait was considered an automated motor activity requiring minimal higher-level cognitive input [
<xref ref-type="bibr" rid="B4">4</xref>
]. Therefore, it seemed only logical that prevention of falls was mainly focused on exercises that address the modifiable physical aspects of fall related mobility impairments, e.g. strength and balance training [
<xref ref-type="bibr" rid="B5">5</xref>
-
<xref ref-type="bibr" rid="B7">7</xref>
]. Consistent evidence has been accumulated that regular physical training can improve muscle strength, aerobic capacity and balance, and delay the point in time when older adults need assistance to manage activities of daily living [
<xref ref-type="bibr" rid="B5">5</xref>
]. Maintenance of postural control during activities of daily living does not usually place high demands on attentional resources of healthy young or middle-aged people. In contrast, when sensory or motor deficits occur due to the natural aging process, the complex generation of movement may have to be adjusted. Movements may then be controlled and performed at an associative or a cognitive stage. Consequently, the postural control of older adults might be more vulnerable to cognitive distractions and additional tasks [
<xref ref-type="bibr" rid="B8">8</xref>
]. Recent research indicates that the influence of motor and sensory impairments on falls is in part moderated by the executive functions [
<xref ref-type="bibr" rid="B9">9</xref>
] and, thus, some of the causes of gait disturbances might also be attributed to changes in the executive functions [
<xref ref-type="bibr" rid="B4">4</xref>
], e.g., changes in divided attention [
<xref ref-type="bibr" rid="B10">10</xref>
,
<xref ref-type="bibr" rid="B11">11</xref>
]. Executive function refers to cognitive processes that control and integrate other cognitive activities [
<xref ref-type="bibr" rid="B12">12</xref>
,
<xref ref-type="bibr" rid="B13">13</xref>
], and this term has been used to describe a group of cognitive actions that include: dealing with novelty, planning and implementing strategies for performance, monitoring performance, using feedback to adjust future responding, vigilance, and inhibiting task-irrelevant information [
<xref ref-type="bibr" rid="B12">12</xref>
] of lower level, more modular, or automatic functions [
<xref ref-type="bibr" rid="B14">14</xref>
]. Common tasks of daily life require attention, rapid motor planning process, and effective inhibition of irrelevant or inappropriate details. Older adults, however, experience increasing difficulties in maintaining multiple task rules in working memory [
<xref ref-type="bibr" rid="B15">15</xref>
].</p>
<p>These findings imply that in addition to physical forms of training, we should possibly also consider cognitive rehabilitation strategies that aim to influence physical functioning, e.g., walking behavior of older adults [
<xref ref-type="bibr" rid="B16">16</xref>
]. The question remains, however, what the best strategies are, that can support achieving this aim.</p>
<p>Several types of cognitive or cognitive-motor interventions that might be able to improve physical functioning have been proposed in the past: cognitive rehabilitation interventions, training of dual-tasking abilities, and the use of computer games or virtual reality [
<xref ref-type="bibr" rid="B4">4</xref>
,
<xref ref-type="bibr" rid="B17">17</xref>
].</p>
<p>Cognitive rehabilitation, defined by the Brain Injury Interdisciplinary Special Interest Group (BI-ISIG) of the American Congress of Rehabilitation Medicine as a "systematic, functionally-oriented service of therapeutic cognitive activities, based on an assessment and understanding of the person's brain-behavior deficits"[
<xref ref-type="bibr" rid="B18">18</xref>
], has shown to be effective in clinical practice [
<xref ref-type="bibr" rid="B19">19</xref>
,
<xref ref-type="bibr" rid="B20">20</xref>
].</p>
<p>Cognitive rehabilitation interventions have been developed to ameliorate cognitive problems experienced by healthy older adults [
<xref ref-type="bibr" rid="B21">21</xref>
,
<xref ref-type="bibr" rid="B22">22</xref>
], and for adults suffering from traumatic brain injury [
<xref ref-type="bibr" rid="B19">19</xref>
,
<xref ref-type="bibr" rid="B23">23</xref>
,
<xref ref-type="bibr" rid="B24">24</xref>
], with the goal of maximizing their current cognitive functioning and/or reducing the risk of cognitive decline. Some of the cognitive interventions, however, also show transfer effects to physical functioning. Specific motor imagery protocols seem to improve mobility in people with stroke [
<xref ref-type="bibr" rid="B25">25</xref>
].</p>
<p>Cognitive-motor interventions are interventions that combine a cognitive with a physical rehabilitation task, e.g. strength and balance exercises together with cognitive exercises or performing dual-tasking exercises. Interventions that used dual-tasking paradigms demonstrated negative effects on postural control or gait while performing a concurrent cognitive task in older adults [
<xref ref-type="bibr" rid="B26">26</xref>
,
<xref ref-type="bibr" rid="B27">27</xref>
], in patients with brain injury [
<xref ref-type="bibr" rid="B28">28</xref>
,
<xref ref-type="bibr" rid="B29">29</xref>
] and Alzheimer's disease [
<xref ref-type="bibr" rid="B30">30</xref>
]. Several authors have suggested that procedures to improve the dual-task performance of elderly should be included in fall prevention programs [
<xref ref-type="bibr" rid="B31">31</xref>
].</p>
<p>Computerized interventions can be divided into biofeedback based systems or systems that use elements of virtual reality. Becoming aware of various physiological functions by using instruments that provide information on the activity of those same systems is considered biofeedback training. The goal, thereby, is to be able to manipulate these systems at will. Processes that can be controlled include for example dynamic balance on a force platform where visual feedback gives information about the center of pressure movements [
<xref ref-type="bibr" rid="B32">32</xref>
]. In virtual reality, in contrast to biofeedback training, environments are created that allow users to interact with images and virtual objects that appear in the virtual environment in real-time through multiple sensory modalities [
<xref ref-type="bibr" rid="B32">32</xref>
,
<xref ref-type="bibr" rid="B33">33</xref>
]. Playing of computer games induced cognitive benefits in older adults [
<xref ref-type="bibr" rid="B34">34</xref>
], and is proposed as a training strategy that may transfer to physical activity related tasks [
<xref ref-type="bibr" rid="B4">4</xref>
].</p>
<p>All three strategies, cognitive rehabilitation, training of dual-tasking abilities, and computerized interventions, have mainly been applied to individuals with stroke, with traumatic brain injury or elderly. Although it seems intuitive that these groups cannot be compared because of the different underlying causes for their respective brain deficits, this may not actually be the case [
<xref ref-type="bibr" rid="B35">35</xref>
,
<xref ref-type="bibr" rid="B36">36</xref>
]. Studies using a neuropsychological deficit profile methodology suggest that the pattern and extent of cognitive decline associated with these conditions is similar, at least partly, for both cognitive and motor deficits [
<xref ref-type="bibr" rid="B36">36</xref>
,
<xref ref-type="bibr" rid="B37">37</xref>
]. This implies that the treatment approaches needed to remediate the observed deficits are theoretically also comparable.</p>
<p>The objective of this systematic review is to examine the literature regarding the use of cognitive and cognitive-motor interventions to improve physical functioning in older adults and in adults with neurological impairments. The aim is to identify strategies that have the potential to affect physical functioning and that might be used in future intervention type studies for older adults. The specific questions that we asked were: (1) what types of cognitive and cognitive-motor intervention methods have been used to influence physical functioning of older adults or adults with neurological impairments? (2) What is the level of evidence for cognitive and cognitive-motor interventions to influence physical functioning in these populations? (3) What is the methodological quality of these studies?</p>
<p>The underlying assumption that drives these questions is that (changes in) cognition also has an impact on physical functioning.</p>
</sec>
<sec sec-type="methods">
<title>Methods</title>
<sec>
<title>Data sources and search strategies</title>
<p>In a first step we undertook a scoping review to gain an overview about existing interventions or systematic reviews on this topic. In addition to studies conducted with older adults, interventions with traumatic brain injury patients and patients with stroke were found. Like older adults, people with brain injury or stroke show difficulties with postural balance, exhibit gait insecurities when performing dual-tasks and have cognitive deficits evident in working memory, attention, and information-processing [
<xref ref-type="bibr" rid="B35">35</xref>
,
<xref ref-type="bibr" rid="B38">38</xref>
]. Additionally it has been shown that people with brain injuries show similar characteristics as older adults with an advanced aged-related cognitive decline. The patterns of cognitive decline observed in patients after traumatic brain injury resembles that of classic aging processes [
<xref ref-type="bibr" rid="B35">35</xref>
,
<xref ref-type="bibr" rid="B39">39</xref>
,
<xref ref-type="bibr" rid="B40">40</xref>
]. The search strategy was focused on older adults over the age of sixty-five. Although we are aware that cognitive and physical deficits in patients with brain injury are not fully comparable with the natural aging process we additionally searched further studies with brain injured patients. We also decided to include studies conducted with stroke patients arising from our search, because of their methodological importance for this review and the possible applicability of the applied methods in the general older population.</p>
<p>We developed an individualized electronic search strategy for the Medline/Premedline, PsycINFO, CINAHL, and EMBASE databases in collaboration with a librarian from the Medicinal Library of the University of Zurich. The search was restricted to English, German, and French language literature. There was no limitation of publication date or restriction by study design. The final search was performed in July 2010.</p>
<p>We used medical sub-headings as search terms, including the following main terms for the population:
<italic>aged, elder, old, aging, brain/head/craniocerebral injury, trauma</italic>
; for cognitive aspects:
<italic>cognition, meta-cognition, learning, awareness, attention, self-directed learning, executive function</italic>
; for motor functions:
<italic>gait, walking, balance, movement, mobility, posture, motor function, accidental falls, training, exercise, physical functioning </italic>
and for the interventions of interest:
<italic>cognitive therapy/rehabilitation/intervention, problem solving, biofeedback, virtual reality, video game, action game, computerized training, user-computer interface, dual-task </italic>
(additional file
<xref ref-type="supplementary-material" rid="S1">1</xref>
). The search strategy was initially run in Medline/Premedline and then adapted to the search format requirements of the other databases included in this review. The search results were supplemented by articles found through hand search by scanning reference lists of identified studies.</p>
</sec>
<sec>
<title>Study collection</title>
<p>After duplicate citations were removed, two reviewers (GP, EDdB) determined which articles should be included within the systematic review by scanning the titles, abstracts and keywords applying the inclusion and exclusion criteria (table
<xref ref-type="table" rid="T1">1</xref>
). A study was considered eligible for inclusion in the review when it was examining the results of a cognitive or cognitive-motor intervention on physical functioning of older adults. As mentioned in the introduction, we included any study that arose from our search concerning people with traumatic brain injury or stroke patients. Cognitive and cognitive-motor interventions were considered studies that included cognitive rehabilitation or a combination of cognitive rehabilitation and physical exercise, respectively. We did not include studies that solely carried out single tests without an intervention. We adopted the definition of the Brain Injury Interdisciplinary Special Interest Group (BI-ISIG) of the American Congress of Rehabilitation Medicine for cognitive rehabilitation to guide our search. Studies evaluating the effectiveness of pharmacological therapy were excluded. If title, abstract or key words provided insufficient information for a decision on inclusion, the methods section of the full-text article was considered.</p>
<table-wrap id="T1" position="float">
<label>Table 1</label>
<caption>
<p>List of inclusion and exclusion details</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left">Area</th>
<th align="left">Inclusion details</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">Population</td>
<td align="left">Any elderly subjects over 65 years, adult (aged > 18 years) brain trauma patients, studies with stroke patients</td>
</tr>
<tr>
<td align="left">Study type</td>
<td align="left">Intervention studies of any type, including case studies and non-randomized trials</td>
</tr>
<tr>
<td align="left">Intervention</td>
<td align="left">Cognitive or cognitive-motor rehabilitation intervention (physical exercise must include a cognitive aspect)</td>
</tr>
<tr>
<td align="left">Outcomes</td>
<td align="left">Outcomes focus on general physical functioning and mobility of upper or lower extremities</td>
</tr>
<tr>
<td colspan="2">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" colspan="2">
<bold>Exclusion details</bold>
</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>Purely physical training, interventions without training period (tests), dual-task intervention without concurrent cognitive task, animal studies, reviews, methodological, theoretical or discussion papers, studies that examine the effect of physical exercise on cognition</p>
</table-wrap-foot>
</table-wrap>
</sec>
<sec>
<title>Data extraction and data synthesis</title>
<p>The following data were extracted from the studies: (1) characteristics of the studied population: number of participants, disease and age, (2) characteristics of the interventions: the design, frequency and duration of the intervention, co-interventions, and control intervention; (3) characteristics of the outcomes: outcome measures and results (tables
<xref ref-type="table" rid="T2">2</xref>
and
<xref ref-type="table" rid="T3">3</xref>
). The included studies were divided into three groups: [
<xref ref-type="bibr" rid="B1">1</xref>
] cognitive rehabilitation, [
<xref ref-type="bibr" rid="B2">2</xref>
] dual-task interventions and [
<xref ref-type="bibr" rid="B3">3</xref>
] computerized interventions. Computerized interventions included every study using an electronic game or task that involves interaction with a user interface to generate visual feedback on a display device.</p>
<table-wrap id="T2" position="float">
<label>Table 2</label>
<caption>
<p>Included studies reported by design and subject specifications</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left">STUDY</th>
<th align="left">DESIGN</th>
<th align="right">N</th>
<th align="left">SUBJECTS</th>
<th align="left">
<bold>AGE </bold>
range or mean (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" colspan="5">Cognitive Rehabilitation Interventions</td>
</tr>
<tr>
<td colspan="5">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">
<bold>Batson et al 2006</bold>
</td>
<td align="left">RCT</td>
<td align="right">6</td>
<td align="left">Community dwelling older adults</td>
<td align="left">65 - 80</td>
</tr>
<tr>
<td align="left">
<bold>Dunsky et al 2008</bold>
</td>
<td align="left">Non-RCT</td>
<td align="right">17</td>
<td align="left">Community dwelling adults with hemiparetic stroke</td>
<td align="left">44 - 79</td>
</tr>
<tr>
<td align="left">
<bold>Hamel & Lajoie 2005</bold>
</td>
<td align="left">RCT</td>
<td align="right">20</td>
<td align="left">Older adults</td>
<td align="left">65 - 90</td>
</tr>
<tr>
<td colspan="5">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" colspan="5">Dual-task Interventions</td>
</tr>
<tr>
<td colspan="5">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">
<bold>Shigematsu et al 2008</bold>
</td>
<td align="left">RCT</td>
<td align="right">63</td>
<td align="left">Community dwelling older adults</td>
<td align="left">65 - 74</td>
</tr>
<tr>
<td align="left">
<bold>Shigematsu et al 2008</bold>
</td>
<td align="left">RCT</td>
<td align="right">39</td>
<td align="left">Community dwelling healthy adults</td>
<td align="left">65 - 74</td>
</tr>
<tr>
<td align="left">
<bold>Silsupadol et al 2006</bold>
</td>
<td align="left">Case study</td>
<td align="right">3</td>
<td align="left">Older adults with history of falls</td>
<td align="left">82, 90 and 93</td>
</tr>
<tr>
<td align="left">
<bold>Silsupadol et al 2009</bold>
</td>
<td align="left">RCT</td>
<td align="right">21</td>
<td align="left">Older adults</td>
<td align="left">75.0 ± 6.1</td>
</tr>
<tr>
<td align="left">
<bold>Vaillant et al 2006</bold>
</td>
<td align="left">RCT</td>
<td align="right">68</td>
<td align="left">Community dwelling older women with osteoporosis</td>
<td align="left">73.5 ± 1.6</td>
</tr>
<tr>
<td align="left">
<bold>You et al 2009</bold>
</td>
<td align="left">RCT</td>
<td align="right">13</td>
<td align="left">Older adults with history of falls</td>
<td align="left">68.3 ± 6.5</td>
</tr>
<tr>
<td colspan="5">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" colspan="5">Computerized Interventions</td>
</tr>
<tr>
<td colspan="5">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">
<bold>Bisson et al 2007</bold>
</td>
<td align="left">Pre-Post</td>
<td align="right">24</td>
<td align="left">Community dwelling older adults</td>
<td align="left">VR: 74.4 ± 3.65; BF: 74.4 ± 4.92</td>
</tr>
<tr>
<td align="left">
<bold>Broeren et al 2008</bold>
</td>
<td align="left">Pre-Post</td>
<td align="right">22</td>
<td align="left">Community dwelling adults with stroke</td>
<td align="left">67.0 ± 12.5</td>
</tr>
<tr>
<td align="left">
<bold>Buccello-Stout et al 2008</bold>
</td>
<td align="left">RCT</td>
<td align="right">16</td>
<td align="left">Older adults</td>
<td align="left">66 - 81</td>
</tr>
<tr>
<td align="left">
<bold>Clark et al 2009</bold>
</td>
<td align="left">Case study</td>
<td align="right">1</td>
<td align="left">Woman resident of a nursing home with unspecified balance disorders</td>
<td align="left">89</td>
</tr>
<tr>
<td align="left">
<bold>de Bruin et al 2010</bold>
</td>
<td align="left">Two groups control</td>
<td align="right">35</td>
<td align="left">Older adults living in a residential care facility</td>
<td align="left">IG: 85.2 ± 5.5; CG: 86.8 ± 8.1</td>
</tr>
<tr>
<td align="left">
<bold>Deutsch et al 2009</bold>
</td>
<td align="left">Case study</td>
<td align="right">2</td>
<td align="left">Chronic phase post-stroke</td>
<td align="left">34 and 48</td>
</tr>
<tr>
<td align="left">
<bold>Hatzitaki et al 2009</bold>
</td>
<td align="left">RCT</td>
<td align="right">48</td>
<td align="left">Community-dwelling healthy older women</td>
<td align="left">70.9 ± 5.7</td>
</tr>
<tr>
<td align="left">
<bold>Hinman 2002</bold>
</td>
<td align="left">RCT</td>
<td align="right">88</td>
<td align="left">Community-dwelling older adults</td>
<td align="left">63 - 87</td>
</tr>
<tr>
<td align="left">
<bold>Jang et al 2005</bold>
</td>
<td align="left">RCT</td>
<td align="right">10</td>
<td align="left">Patients with stroke</td>
<td align="left">57.1 ± 4.5</td>
</tr>
<tr>
<td align="left">
<bold>Kerdoncuff et al 2004</bold>
</td>
<td align="left">RCT</td>
<td align="right">25</td>
<td align="left">Patients with stroke</td>
<td align="left">59.5 ± 13.5</td>
</tr>
<tr>
<td align="left">
<bold>Lajoie 2003</bold>
</td>
<td align="left">RCT</td>
<td align="right">24</td>
<td align="left">Community-dwelling elderly</td>
<td align="left">IG: 70.3; CG: 71.4</td>
</tr>
<tr>
<td align="left">
<bold>Mumford et al 2010</bold>
</td>
<td align="left">Case study</td>
<td align="right">3</td>
<td align="left">Patients with TBI</td>
<td align="left">20, 20 and 21</td>
</tr>
<tr>
<td align="left">
<bold>Sackley et al 1997</bold>
</td>
<td align="left">RCT</td>
<td align="right">26</td>
<td align="left">Patients with stroke</td>
<td align="left">41-85</td>
</tr>
<tr>
<td align="left">
<bold>Srivastava et al 2009</bold>
</td>
<td align="left">Pre-Post</td>
<td align="right">45</td>
<td align="left">Patients with stroke</td>
<td align="left">45.5 ± 11.2</td>
</tr>
<tr>
<td align="left">
<bold>Sugarman et al 2009</bold>
</td>
<td align="left">Case study</td>
<td align="right">1</td>
<td align="left">Patent with stroke</td>
<td align="left">86</td>
</tr>
<tr>
<td align="left">
<bold>Talassi et al 2007</bold>
</td>
<td align="left">Case-control</td>
<td align="right">54</td>
<td align="left">Community-dwelling older adults with MCI or MD</td>
<td align="left">42 - 91</td>
</tr>
<tr>
<td align="left">
<bold>Wolf et al 1997</bold>
</td>
<td align="left">RCT</td>
<td align="right">72</td>
<td align="left">Independently living older adults</td>
<td align="left">CBT: 77.7 ± 6.5; TC: 77.7 ± 5.6; CG: 75.2 ± 4.9</td>
</tr>
<tr>
<td align="left">
<bold>Yang et al 2008</bold>
</td>
<td align="left">RCT</td>
<td align="right">20</td>
<td align="left">Patients with stroke</td>
<td align="left">30 - 74</td>
</tr>
<tr>
<td align="left">
<bold>Yong Joo et al 2010</bold>
</td>
<td align="left">Pre-Post</td>
<td align="right">16</td>
<td align="left">Rehabilitation inpatients within 3 months post-stroke</td>
<td align="left">64.5 ± 9.6</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>
<bold>Abbreviations</bold>
: RCT = Randomized Controlled Trial; Non-RCT = Nonrandomized Controlled Trial; TC = Tai Chi; VR = Virtual reality; BF = Biofeedback; IG = Intervention Group; CG = Control Group</p>
</table-wrap-foot>
</table-wrap>
<table-wrap id="T3" position="float">
<label>Table 3</label>
<caption>
<p>Included studies reported by subjects, outcome measures, intervention, control and results</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left">STUDY</th>
<th align="left">SUBJECTS</th>
<th align="left">OUTCOME MEASURES</th>
<th align="left">INTERVENTION</th>
<th align="left">CONTROL</th>
<th align="left">RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" colspan="6">
<bold>Cognitive Rehabilitation Interventions</bold>
</td>
</tr>
<tr>
<td colspan="6">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">
<bold>Batson et al, 2006 </bold>
[
<xref ref-type="bibr" rid="B44">44</xref>
]</td>
<td align="left">- n = 6; community-dwelling elderly
<break></break>
- age range: 65-80 years</td>
<td align="left">- Standardized measures of balance, gait speed and balance confidence
<break></break>
- BBS, ABC
<break></break>
- TUG</td>
<td align="left">Mental imagery plus physical practice;
<break></break>
6 weeks: 2x/week for 50 min</td>
<td align="left">Health education plus physical practice
<break></break>
6 weeks: 2x/week for 50 min</td>
<td align="left">- Significant results for TUG only for the group as a whole
<break></break>
- No significant results for either group or for the group as a whole for remaining measures</td>
</tr>
<tr>
<td colspan="6">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">
<bold>Dunsky et al, 2008 </bold>
[
<xref ref-type="bibr" rid="B50">50</xref>
]</td>
<td align="left">- n = 17; community-dwelling adults with hemiparetic stroke
<break></break>
- age range: 44-79 years</td>
<td align="left">- Spatiotemporal and kinematic gait parameters
<break></break>
- Tinetti POMA
<break></break>
- FMA
<break></break>
- Modified FWCI</td>
<td align="left">Motor imagery training;
<break></break>
6 weeks: 3 x/week for 20 min</td>
<td align="left">None</td>
<td align="left">- Spatiotemporal parameters: significant improvements in mean gait speed at baseline and follow-up; stride length, paretic and non-paretic step length increased significantly at post-intervention
<break></break>
- Significant increase of sagittal ROM of the paretic knee joint
<break></break>
- Significant increase of gait symmetry after intervention
<break></break>
- Treatment effect size was moderate for most of the variables</td>
</tr>
<tr>
<td colspan="6">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">
<bold>Hamel & Lajoie, 2005 </bold>
[
<xref ref-type="bibr" rid="B51">51</xref>
]</td>
<td align="left">- n = 20; older adults
<break></break>
- age range: 65-90 years</td>
<td align="left">- A/P & M/L postural oscillations
<break></break>
- Reaction time to auditory stimuli
<break></break>
- BBS
<break></break>
- ABC</td>
<td align="left">Mental imagery training;
<break></break>
6 weeks: daily practice</td>
<td align="left">No involvement in any type of training</td>
<td align="left">- MI-group became more stable after training, while sway of control group increased when compared to pre-test.
<break></break>
- A/P postural oscillation significantly decreased in MI-group
<break></break>
- Significant decrease in reaction time task for MI-group
<break></break>
- No significant outcomes on BBS and ABC scales</td>
</tr>
<tr>
<td colspan="6">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" colspan="6">
<bold>Dual-task Interventions</bold>
</td>
</tr>
<tr>
<td colspan="6">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">
<bold>Shigematsu et al, 2008 </bold>
[
<xref ref-type="bibr" rid="B58">58</xref>
]</td>
<td align="left">- n = 63; community dwelling older adults
<break></break>
- age range: 65-74 years</td>
<td align="left">- Physical tests of balance, leg strength and coordination
<break></break>
- Self-reported occurrence of falls or trips
<break></break>
- Step-recording with pedometers</td>
<td align="left">Square-Stepping Exercise (SSE);
<break></break>
12 weeks: 2x/week for 70 min</td>
<td align="left">Supervised walking (W);
<break></break>
12 week: 1x week for 70 min</td>
<td align="left">- Functional fitness of lower extremities improved more in SSE than in W
<break></break>
- No significantly lower rate of falls per trip for SSE compared to W.</td>
</tr>
<tr>
<td colspan="6">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">
<bold>Shigematsu et al, 2008 </bold>
[
<xref ref-type="bibr" rid="B59">59</xref>
]</td>
<td align="left">- n = 39; community-dwelling healthy adults
<break></break>
- age range: 65-74 years</td>
<td align="left">- Chair stands, Leg extension power, Single-leg balance with eyes closed, functional reach, standing up from a lying position, stepping with both feet, walking around two cones, 10 m-walk, Sit&Reach</td>
<td align="left">Square-Stepping Exercise (SSE);
<break></break>
12 weeks: 2x/week for 70 min</td>
<td align="left">Strength and balance training;
<break></break>
12 weeks: 2x/week for 70 min</td>
<td align="left">- SSE: significant within-group improvement in one-leg balance
<break></break>
- SB: Significant improvement of functional reach
<break></break>
- Performances on remaining test were significantly better for both groups.</td>
</tr>
<tr>
<td colspan="6">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">
<bold>Silsupadol et al, 2006 </bold>
[
<xref ref-type="bibr" rid="B62">62</xref>
]</td>
<td align="left">- n = 3 older adults with self-reported history of falls or concerns about impaired balance
<break></break>
- age: 82, 90 and 93 years</td>
<td align="left">- Mediolateral COM displacement und single-task (ST) and dual-task (DT)
<break></break>
- BBS, ABC
<break></break>
- DGI
<break></break>
- TUG</td>
<td align="left">Dual-task balance training with fixed- (FP) or variable-priority (VP);
<break></break>
4 weeks: 3x/week for 45 min</td>
<td align="left">Single-task balance training;
<break></break>
4 weeks: 3x/week for 45 min</td>
<td align="left">- Balance improved in all 3 participants, BBS, DGI and ABC scores increased
<break></break>
- Time to complete TUG decreased under both conditions (participants who received DT-Training showed more improvement in TUG under DT than under ST and vice versa)
<break></break>
- Subject who received DT-training using VP, showed improvements on other dual tasks that were not directly trained (novel task)
<break></break>
- Follow-up (2 weeks): time to perform TUG decreased for all subjects
<break></break>
- Follow-up (3 months): Clinical measures of balance were retained; TUG in subject with FP further improved (9%)</td>
</tr>
<tr>
<td colspan="6">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">
<bold>Silsupadol et al, 2009a&b </bold>
[
<xref ref-type="bibr" rid="B60">60</xref>
,
<xref ref-type="bibr" rid="B61">61</xref>
]</td>
<td align="left">- n = 21; elderly adults
<break></break>
- mean age: 75 ± 6.1 years</td>
<td align="left">- Self-selected gait speed under single and dual task conditions
<break></break>
- Gait temporal-distance measurements
<break></break>
- BBS, ABC
<break></break>
- Average angle of frontal plane COM position and ankle joint center (AJC)</td>
<td align="left">Dual-task balance training with fixed- (FP) or variable-priority (VP);
<break></break>
4 weeks: 3x/week for 45 min</td>
<td align="left">Single-task balance training;
<break></break>
4 weeks: 3x/week for 45 min</td>
<td align="left">- All participants improved gait speed under ST conditions.
<break></break>
- DT-groups walked significantly faster under DT conditions. No significant difference in gait speed under DT conditions for ST-group
<break></break>
- All participants improved balance under ST-conditions
<break></break>
- ABC Scale: ST group increased their level of confidence more than DT groups
<break></break>
- BBS Scale: improvements in BBS were comparable across training groups
<break></break>
- Follow-up: DT-training with VP instructions demonstrated a training effect on DT-gait speed at the end of the second week of training and also after 3 months follow-up
<break></break>
- All groups showed a significantly smaller AJC-angle after training when walking under ST conditions
<break></break>
- Under DT-conditions reduction of AJC-angle was significant for all groups, but was greater for the VP-group than for the ST-group and FP-group
<break></break>
- No significant effects on AJC-angle in a novel (untrained) DT-condition for all groups.</td>
</tr>
<tr>
<td colspan="6">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">
<bold>Vaillant et al, 2006 </bold>
[
<xref ref-type="bibr" rid="B66">66</xref>
]</td>
<td align="left">- n = 68; community-dwelling older women with osteoporosis
<break></break>
- mean age: 73.5 ± 1.6 years</td>
<td align="left">- TUG & TUG-DT
<break></break>
- One Leg Balance (OLB) and OLB with concurrent task (OLB-DT)</td>
<td align="left">Physical exercise while counting, memorizing or reciting (dual task);
<break></break>
6 weeks: 2x/week</td>
<td align="left">Physical exercises (single task);
<break></break>
6 weeks: 2x/week</td>
<td align="left">- Adding cognitive tasks did not significantly alter the effects of the exercise program
<break></break>
- 2 weeks follow-up: Significant improvements for all outcome measures in both groups; TUG time improved more in single-task group than in dual-task group
<break></break>
- 3 months follow-up: Improvements in TUG-DT significantly greater in dual-task group than in the single-task group</td>
</tr>
<tr>
<td colspan="6">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">
<bold>You et al, 2009 </bold>
[
<xref ref-type="bibr" rid="B70">70</xref>
]</td>
<td align="left">- n = 13; older adults with history of falls
<break></break>
- mean age: 68.3 ± 6.5 years</td>
<td align="left">- Gait speed
<break></break>
- AP-/ML-COP deviation</td>
<td align="left">Cognitive Gait Intervention (CGI);
<break></break>
6 weeks: 5x/week for 30 min</td>
<td align="left">Placebo version of CGI;
<break></break>
6 weeks: 5x/week for 30 min</td>
<td align="left">- No significant difference in the ML-COP or AP-COP deviation measures neither in control nor experiment group;
<break></break>
- Significant increase in gait speed in control group but not in experimental group</td>
</tr>
<tr>
<td colspan="6">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" colspan="6">
<bold>Computerized Interventions</bold>
</td>
</tr>
<tr>
<td colspan="6">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">
<bold>Bisson et al, 2007 </bold>
[
<xref ref-type="bibr" rid="B32">32</xref>
]</td>
<td align="left">- n = 24; community dwelling older adults
<break></break>
- mean age: VR 74.4 ± 3.65 years, BF 74.4 ± 4.92 years</td>
<td align="left">- Static balance
<break></break>
- Simple auditory reaction time task
<break></break>
- CB&M</td>
<td align="left">Dynamic balance training with visual biofeedback (BF) or in virtual reality (VR);
<break></break>
10 weeks: 2x/week for 30 min</td>
<td align="left">None</td>
<td align="left">- Mean CB&M scores for both groups increased significantly from baseline to post-training and retention, no difference between groups
<break></break>
- Static balance: no differences between groups and no training effect on variability of COP displacement; Significant task effect and interaction between directions of sway and tasks
<break></break>
- Reaction time: no group effect; significant main effect of time; reaction time at baseline significantly higher compared to post-training and retention; both groups improved their reaction time equally</td>
</tr>
<tr>
<td colspan="6">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">
<bold>Broeren et al, 2008 </bold>
[
<xref ref-type="bibr" rid="B45">45</xref>
]</td>
<td align="left">- n = 22; community dwelling persons with stroke
<break></break>
- mean age: 67 ± 12.5 years</td>
<td align="left">- Manual Ability measurements (BBT and ABILHAND)
<break></break>
- Trail Making Test B
<break></break>
- Kinematics of upper extremities (velocity, hand-path ratio etc.)</td>
<td align="left">3D computer game play with haptic device and unsupported upper extremities;
<break></break>
4 weeks: 3 x/week for 45 min</td>
<td align="left">Continued participation in usual physical activities</td>
<td align="left">- BBT: Increase in treatment group by 9%
<break></break>
- ABILHAND: No significant changes in both groups
<break></break>
- TMT-B: median time decreased for completing the task in both groups
<break></break>
- Kinematics: Time to complete the VR task and HPR decreased significantly in treatment group
<break></break>
- Hand trajectories are qualitatively more restrained, self-controlled, smoother and less clutters after training</td>
</tr>
<tr>
<td colspan="6">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">
<bold>Buccello-Stout et al, 2008 </bold>
[
<xref ref-type="bibr" rid="B46">46</xref>
]</td>
<td align="left">- n = 16; older adults
<break></break>
- age range: 66 - 81 years</td>
<td align="left">- Time to complete an obstacle course with 13 soft obstacles
<break></break>
- Number of penalties on obstacle course</td>
<td align="left">Walking straight on a treadmill in a rotating virtual room;
<break></break>
4 weeks: 2 x/week for 20 min</td>
<td align="left">Walking straight on a treadmill in a static virtual room;
<break></break>
4 weeks: 2 x/week for 20 min</td>
<td align="left">- Average time scores to complete obstacle course and average penalty scores significantly decreased in experimental group after intervention and at retention (4 weeks)</td>
</tr>
<tr>
<td colspan="6">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">
<bold>Clark et al, 2009 </bold>
[
<xref ref-type="bibr" rid="B47">47</xref>
]</td>
<td align="left">- n = 1; woman resident of a nursing home with unspecified balance disorders
<break></break>
- age:89 years</td>
<td align="left">- BBS, ABC
<break></break>
- DGI
<break></break>
- TUG
<break></break>
- MMSE</td>
<td align="left">Nintendo Wii Bowling game;
<break></break>
2 weeks: 3x/week for 60 min</td>
<td align="left">None</td>
<td align="left">- Improvements in all outcome measures
<break></break>
- Self-reported improvements in balance, ambulation ability and confidence</td>
</tr>
<tr>
<td colspan="6">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">
<bold>de Bruin et al, 2010 </bold>
[
<xref ref-type="bibr" rid="B48">48</xref>
]</td>
<td align="left">- n = 35; older adults living in a residential care facility;
<break></break>
- mean age: CGD 85.2 ± 5.5 years, UC 86.8 ± 8.1 years</td>
<td align="left">- Gait temporal-distance measurements
<break></break>
- Dual task costs of walking
<break></break>
- ETGUG - FES-I</td>
<td align="left">Computer game dancing (CGD) plus progressive resistance training;
<break></break>
12 weeks: 2x/week for 45-60 min</td>
<td align="left">Usual care physical intervention (UC);
<break></break>
12 weeks: 1x/week for 30-45 min</td>
<td align="left">- DTC: Significant decrease in DTC of walking velocity and stride time in CGD-group. No significant changes in DTC of cadence and step time in both groups.
<break></break>
- ETGUG: no significant time effect in both groups
<break></break>
- FES-I: no significant time effect in both groups</td>
</tr>
<tr>
<td colspan="6">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">
<bold>Deutsch et al, 2009 </bold>
[
<xref ref-type="bibr" rid="B49">49</xref>
]</td>
<td align="left">- n = 2; in chronic phase post-stroke patients
<break></break>
- age: 48 and 34 years</td>
<td align="left">- Gait speed
<break></break>
- Six-minute walk test (meters)
<break></break>
- BBS, ABC
<break></break>
- DGI
<break></break>
- TUG and TGU-DT</td>
<td align="left">Nintendo Wii Sports and Wii Fit Programs;
<break></break>
4 weeks: 3x/week for 60 min</td>
<td align="left">Balance and coordination activities in different conditions;
<break></break>
4 weeks: 3x/week for 60 min</td>
<td align="left">- Gait speed increased for both participants (retained at follow-up)
<break></break>
- Gait endurance increased modestly for both participants
<break></break>
- DGI and ABC scores increased for both participants
<break></break>
- TUG and TUG-DT time decreased for both participants; Control subject showed further improvement at post-test</td>
</tr>
<tr>
<td colspan="6">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">
<bold>Hatzitaki et al, 2009 </bold>
[
<xref ref-type="bibr" rid="B52">52</xref>
]</td>
<td align="left">- n = 48; community-dwelling healthy older women
<break></break>
- mean age: 70.89 ± 5.67 years</td>
<td align="left">- Static postural sway data: COP displacement in A/P and M/L direction
<break></break>
- Angular excursion of lower leg, pelvis and trunk</td>
<td align="left">Balance training on platform with visual feedback in A/P or M/L direction;
<break></break>
4 weeks: 3x/week for 25 min</td>
<td align="left">No involvement in any type of training</td>
<td align="left">- Normal quiet stance: No significant changes in COP displacement and angular kinematics in either of the two training groups.
<break></break>
- Significant effect of training on interlimb COP asymmetry in A/P-group
<break></break>
- Sharpened Romberg Stance: Significant reduction of COP displacement in A/P-group, no adaptations in M/L-group. A/P group showed significantly decreased peak amplitude and SD of lower leg rotation in the pitch direction and of trunk's mediolateral rotation. No significant changes in the M/L-group</td>
</tr>
<tr>
<td colspan="6">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">
<bold>Hinman, 2002 </bold>
[
<xref ref-type="bibr" rid="B53">53</xref>
]</td>
<td align="left">- n = 88; community-dwelling elderly
<break></break>
- age range: 63-87 years</td>
<td align="left">- BBS
<break></break>
- MFES
<break></break>
- Timed 50-foot walk test (TWT)
<break></break>
- Simple reaction time</td>
<td align="left">Computerized Balance Training (CBT) or Home program of balance exercises (HEP);
<break></break>
4 weeks: 3 x/week for 20 min</td>
<td align="left">No involvement in any type of training</td>
<td align="left">- Subjects in both training groups showed slight improvements in all measures. Subjects of control group improved to a lesser degree.</td>
</tr>
<tr>
<td colspan="6">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">
<bold>Jang et al, 2005 </bold>
[
<xref ref-type="bibr" rid="B54">54</xref>
]</td>
<td align="left">- n = 10; patients with hemiparetic stroke
<break></break>
- mean age: 57.1 ± 4.5 years</td>
<td align="left">- BBT
<break></break>
- FMA
<break></break>
- Manual Function Test
<break></break>
- Several fMRI data</td>
<td align="left">VR game exercise with IREX system focusing on reaching, lifting and grasping;
<break></break>
4 weeks: 5x/week for 60 min</td>
<td align="left">No involvement in any type of training</td>
<td align="left">- Significant difference between the groups, VR-group improved in motor functions, control group did not show any change
<break></break>
- Cortical activation was reorganized from contralesional to ipsilesional activation in the laterality index</td>
</tr>
<tr>
<td colspan="6">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">
<bold>Kerdoncuff et al 2004 </bold>
[
<xref ref-type="bibr" rid="B71">71</xref>
]</td>
<td align="left">- n = 25; patients with stroke
<break></break>
- mean age: 59.5 ± 13.5</td>
<td align="left">- FMA
<break></break>
- Gait evaluation
<break></break>
- Barthel Index
<break></break>
- Measurement of functional independence (MFI)
<break></break>
- Sway measurements on force platform</td>
<td align="left">Progressive balance training with visual biofeedback plus traditional training;
<break></break>
3 weeks: 5x/week</td>
<td align="left">Traditional training;
<break></break>
3 weeks: 5x/week</td>
<td align="left">- Improvements in gait speed for control group, decrease for intervention group
<break></break>
- Improvements in FMA, MFI and Barthel Index for both groups
<break></break>
- Improvements of force platform parameters with closed eyes</td>
</tr>
<tr>
<td colspan="6">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">
<bold>Lajoie, 2003 </bold>
[
<xref ref-type="bibr" rid="B55">55</xref>
]</td>
<td align="left">- n = 24; community-dwelling elderly
<break></break>
- mean age: IG 70.3 years, CG 71.4 years</td>
<td align="left">- BBS, ABC
<break></break>
- Auditory-verbal reaction test
<break></break>
- Postural sway data</td>
<td align="left">Computerized Balance Training;
<break></break>
8 weeks: 2x/week for 60 min</td>
<td align="left">No involvement in any type of training</td>
<td align="left">- BBS: Significant difference for CBT-group after intervention
<break></break>
- ABC: No significant changes
<break></break>
- Significant decrease of reaction time in CBT-group after intervention
<break></break>
- Postural sway: No significant changes in both groups</td>
</tr>
<tr>
<td colspan="6">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">
<bold>Mumford et al, 2010 </bold>
[
<xref ref-type="bibr" rid="B56">56</xref>
]</td>
<td align="left">- n = 3; patients with TBI
<break></break>
- mean age: 20.3 years</td>
<td align="left">- Movement accuracy
<break></break>
- Movement speed
<break></break>
- Movement efficiency
<break></break>
- BBT
<break></break>
- MAND</td>
<td align="left">Table-top VR-System for moving objects to cued locations with augmented movement feedback;
<break></break>
12 weeks: 1x/week for 60 min</td>
<td align="left">None</td>
<td align="left">- Accuracy: Improvements after intervention and maintained in 2 of 3 patients
<break></break>
- Speed: No improvement after intervention for either hand
<break></break>
- Efficiency: Improved performance efficiency for all participants after intervention
<break></break>
-
<break></break>
BBT: moderate improvements
<break></break>
- MAND: moderate improvements</td>
</tr>
<tr>
<td colspan="6">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">
<bold>Sackley et al, 1997 </bold>
[
<xref ref-type="bibr" rid="B57">57</xref>
]</td>
<td align="left">- n = 26; stroke patients
<break></break>
- age range: 41-85 years</td>
<td align="left">- Stance symmetry and sway
<break></break>
- Rivermead Motor Assessment
<break></break>
- Nottingham 10 Point ADL Scale</td>
<td align="left">Balance training using visual feedback;
<break></break>
4 weeks: 3x/week for 60 min</td>
<td align="left">Balance training without visual feedback; 4 weeks: 3x/week for 60 min</td>
<td align="left">- Treatment group demonstrated significantly better performance when compared with controls for stance symmetry and for functional performance (ADL and Gross Function scores)
<break></break>
- Sway values showed a tendency to greater improvement</td>
</tr>
<tr>
<td colspan="6">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">
<bold>Srivastava et al, 2009 </bold>
[
<xref ref-type="bibr" rid="B63">63</xref>
]</td>
<td align="left">- n = 45; stroke patients
<break></break>
- mean age: 45.51 ± 11.24 years</td>
<td align="left">- BBS
<break></break>
- Balance Index
<break></break>
- Dynamic Limits of Stability scores
<break></break>
- Walking ability
<break></break>
- Barthel Index</td>
<td align="left">Balance training on force platform with visual feedback;
<break></break>
4 weeks: 5x/week for 20 min</td>
<td align="left">None</td>
<td align="left">- Statistically significant differences at the end of training for all outcome measures
<break></break>
- Statistically significant differences for all outcomes at 3 months follow-up</td>
</tr>
<tr>
<td colspan="6">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">
<bold>Sugarman et al, 2009 </bold>
[
<xref ref-type="bibr" rid="B64">64</xref>
]</td>
<td align="left">- n = 1; woman 5 weeks after stroke
<break></break>
- age: 86 years</td>
<td align="left">- BBS
<break></break>
- Functional Reach
<break></break>
- TUG
<break></break>
- Postural Stability Index (STI)
<break></break>
- Stability Score (ST)</td>
<td align="left">Nintendo Wii Fit balance training plus standard physical therapy with emphasis on functional activities;
<break></break>
4 × 45 min</td>
<td align="left">None</td>
<td align="left">- Modest improvements in BBS and Functional Reach tests
<break></break>
- TUG time decrease
<break></break>
- Modest improvements in postural stability tests</td>
</tr>
<tr>
<td colspan="6">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">
<bold>Talassi et al, 2007 </bold>
[
<xref ref-type="bibr" rid="B65">65</xref>
]</td>
<td align="left">- n = 54; community-dwelling older adults with mild cognitive impairment (MCI) or mild dementia (MD)
<break></break>
- age range: 42-91 years</td>
<td align="left">- PPT
<break></break>
- Basic and instrumental ADL</td>
<td align="left">Computerized cognitive training (CCT), occupational therapy (OT) and behavioral training (BT);
<break></break>
3 weeks: 4x/week for 30-45 min</td>
<td align="left">same program with physical rehabilitation program (PT) instead of CCT</td>
<td align="left">- Participants with MCI showed significant improvements in PPT
<break></break>
- Unspecific control program showed no significant effects</td>
</tr>
<tr>
<td colspan="6">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">
<bold>Wolf et al, 1997 </bold>
[
<xref ref-type="bibr" rid="B67">67</xref>
]</td>
<td align="left">- n = 72; independently living older adults;
<break></break>
- mean age: CBT 77.7 ± 6.5 years, TC 77.7 ± 5.6 years, Control Group 75.2 ± 4.9 years</td>
<td align="left">- Postural stability measurements under defined conditions
<break></break>
- Fear of Falling Questionnaire</td>
<td align="left">Computerized Balance Training (CBT) or Tai Chi (TC);
<break></break>
15 weeks: CBT 1x/week for 60 min, TC 2x/week for 60 min</td>
<td align="left">Educational intervention (ED); 15 weeks: 1x/week for 60 min</td>
<td align="left">- CBT: improved postural stability
<break></break>
- TC: no improvements in postural stability, but reduction of fear of falling occurred</td>
</tr>
<tr>
<td colspan="6">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">
<bold>Yang et al, 2008 </bold>
[
<xref ref-type="bibr" rid="B68">68</xref>
]</td>
<td align="left">- n = 20; adults with stroke
<break></break>
- age range: 30-74 years</td>
<td align="left">- Walking speed - Community walk test (CWT)
<break></break>
- Walking Ability Questionnaire (WAQ)
<break></break>
- ABC</td>
<td align="left">Virtual reality-based treadmill training;
<break></break>
3 weeks: 3x/week for 20 min</td>
<td align="left">Treadmill training; 3 weeks: 3x/week for 20 min</td>
<td align="left">- VR-Group: significant improvement in all outcomes post-training and significant improvements in walking speed, CWT and WAQ score 1 month after completion of program
<break></break>
- CG: significant improvements in CWT post-training and in follow-up period, significant improvements of WAQ score at follow-up</td>
</tr>
<tr>
<td colspan="6">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">
<bold>Yong Joo et al, 2010 </bold>
[
<xref ref-type="bibr" rid="B69">69</xref>
]</td>
<td align="left">- n = 16; rehabilitation inpatients within 3 months post-stroke
<break></break>
- mean age: 64.5 ± 9.6 years</td>
<td align="left">- FMA
<break></break>
- Motricity Index - Modified Ashworth Scale (MAS)
<break></break>
- Visual Analogue Scale for upper limb pain</td>
<td align="left">Upper limb exercises with Nintendo Wii in addition to usual rehabilitation;
<break></break>
2 weeks: 6x/week for 30 min</td>
<td align="left">None</td>
<td align="left">- Significant improvements in the FMA and Motricity Index scores</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>
<bold>Abbreviations</bold>
: BBS = Berg Balance Scale; ABC = Activities-specific Balance Confidence Scale; CB&M = Functional Balance and Mobility; COP = Centre of Pressure; COM = Centre of Mass; DGI = Dynamic Gait Index; TUG = Timed Up and Go Test; TUG-DT = Timed Up and Go Test Dual Task; ETGUG = Expanded Timed Up and Go Test; MMSE = Mini Mental State Examination; ADL = Activities of Daily Living; BBT = Box and Block Test; MAND = Mc Carron Assessment of Neuromuscular Dysfunction; FMA = Fugl-Meyer Assessment of Upper Limb Motor Function; FES-I = Falls Efficacy Scale International; MFES = Tinetti's Modified Falls Efficacy Scale; POMA = Performance Oriented Mobility Assessment; FCWI = Functional Walking Categories Index; PPT = Physical Performance Test</p>
</table-wrap-foot>
</table-wrap>
<p>Because we expected the interventions and reported outcome measures to be markedly varied, we focused on a description of the studies and their results, and on qualitative synthesis rather than meta-analysis.</p>
</sec>
<sec>
<title>Assessment of study quality</title>
<p>As the basis for our critical appraisal of the studies, a checklist designed for assessing the methodological quality of both randomized and non-randomized studies of healthcare interventions developed by Downs and Black [
<xref ref-type="bibr" rid="B41">41</xref>
] was used. The checklist assesses biases related to reporting, external validity, internal validity, and power. Seven items concerning follow-up analyses (items 9, 17 and 26), allocation concealment (items 14 and 24), adverse effects (item 8), and representativeness of treatment places and facilities (item 13) were not considered in this review. The items were excluded because we were not primarily interested in possible long-term effects of cognitive or cognitive-motor interventions but rather in short-term effects of the interventions on motor functioning. The blinding of participants and investigators, the assessment of adverse effects, and the representativeness of the treatment places were also excluded. We considered these as being of minor significance for this review.</p>
<p>The remaining 20 items were applied by two reviewers (GP/EDdB) to assess the methodological quality of the studies (additional file
<xref ref-type="supplementary-material" rid="S2">2</xref>
). The total possible score was 22 points. The scoring for statistical power (item 27) was simplified to a choice between 0, 1 or 2 points depending on the level of power to detect a clinically important effect. The scale ranged from insufficient (β < 70% = 0 points), sufficient (β = 70-80% = 1 point) or excellent (β > 80% = 2 points). To assess the level of agreement between the investigators a Cohen's kappa analysis was performed on all items of the checklist. In accordance with Landis and Koch's benchmarks for assessing the agreement between raters a kappa-score of 0.81 - 1.0 was considered almost perfect, 0.61 - 0.8 was substantial, 0.41 - 0.6 was moderate, 0.21 - 0.4 was fair, 0.0 - 0.2 slight and scores <0 poor [
<xref ref-type="bibr" rid="B42">42</xref>
]. Disagreements were resolved by consensus.</p>
<p>The PRISMA-statement was followed for reporting items of this systematic review [
<xref ref-type="bibr" rid="B43">43</xref>
].</p>
</sec>
</sec>
<sec>
<title>Results</title>
<sec>
<title>Study selection</title>
<p>The search provided a total of 2349 references (figure
<xref ref-type="fig" rid="F1">1</xref>
). After adjusting for duplicates, 1697 remained. Of these 1671 were discarded because they provided only physical exercise (n = 159), did not discuss outcomes or population of interest (n = 89), constituted review articles or were no interventional studies (n = 217), executed only single tests (n = 246) or were clearly out of scope of this review (n = 944). The remaining 26 potentially relevant articles were supplemented by 10 additional references retrieved by citations and author tracking, resulting in a total of 36 articles being eligible for full-text reading. After full-text reading eight articles were excluded because they did not report outcomes of interest (n = 1), applied no intervention (n = 1), applied no training (n = 4), or were theoretical articles (n = 2). One article appeared to be a written summary of a poster presentation and represented an included article (n = 1).</p>
<fig id="F1" position="float">
<label>Figure 1</label>
<caption>
<p>Study selection flow chart</p>
</caption>
<graphic xlink:href="1471-2318-11-29-1"></graphic>
</fig>
</sec>
<sec>
<title>Characteristics of included studies</title>
<p>Of the 28 studies finally selected for the review 27 were published in English [
<xref ref-type="bibr" rid="B32">32</xref>
,
<xref ref-type="bibr" rid="B44">44</xref>
-
<xref ref-type="bibr" rid="B70">70</xref>
] and one in French [
<xref ref-type="bibr" rid="B71">71</xref>
]. The publication dates range from 1997 [
<xref ref-type="bibr" rid="B67">67</xref>
] to 2010 [
<xref ref-type="bibr" rid="B48">48</xref>
,
<xref ref-type="bibr" rid="B56">56</xref>
,
<xref ref-type="bibr" rid="B69">69</xref>
]. In the selected studies participants were older adults partially with history of falls [
<xref ref-type="bibr" rid="B47">47</xref>
,
<xref ref-type="bibr" rid="B70">70</xref>
], balance disorders [
<xref ref-type="bibr" rid="B47">47</xref>
,
<xref ref-type="bibr" rid="B62">62</xref>
], with mild cognitive impairments [
<xref ref-type="bibr" rid="B65">65</xref>
] or osteoporosis [
<xref ref-type="bibr" rid="B66">66</xref>
]. Ten studies were concerned with patients after stroke [
<xref ref-type="bibr" rid="B45">45</xref>
,
<xref ref-type="bibr" rid="B49">49</xref>
,
<xref ref-type="bibr" rid="B50">50</xref>
,
<xref ref-type="bibr" rid="B54">54</xref>
,
<xref ref-type="bibr" rid="B57">57</xref>
,
<xref ref-type="bibr" rid="B63">63</xref>
,
<xref ref-type="bibr" rid="B64">64</xref>
,
<xref ref-type="bibr" rid="B68">68</xref>
,
<xref ref-type="bibr" rid="B69">69</xref>
,
<xref ref-type="bibr" rid="B71">71</xref>
] and one study with traumatic brain injury patients [
<xref ref-type="bibr" rid="B56">56</xref>
].</p>
<p>From the 28 included articles three used an isolated cognitive rehabilitation intervention [
<xref ref-type="bibr" rid="B44">44</xref>
,
<xref ref-type="bibr" rid="B50">50</xref>
,
<xref ref-type="bibr" rid="B51">51</xref>
], seven articles used a dual-task intervention [
<xref ref-type="bibr" rid="B58">58</xref>
-
<xref ref-type="bibr" rid="B62">62</xref>
,
<xref ref-type="bibr" rid="B66">66</xref>
,
<xref ref-type="bibr" rid="B70">70</xref>
] and 19 applied a computerized intervention [
<xref ref-type="bibr" rid="B32">32</xref>
,
<xref ref-type="bibr" rid="B45">45</xref>
-
<xref ref-type="bibr" rid="B49">49</xref>
,
<xref ref-type="bibr" rid="B52">52</xref>
-
<xref ref-type="bibr" rid="B57">57</xref>
,
<xref ref-type="bibr" rid="B63">63</xref>
-
<xref ref-type="bibr" rid="B65">65</xref>
,
<xref ref-type="bibr" rid="B67">67</xref>
-
<xref ref-type="bibr" rid="B69">69</xref>
,
<xref ref-type="bibr" rid="B71">71</xref>
]. From the seven articles concerning dual-tasking two articles arise from the same intervention [
<xref ref-type="bibr" rid="B60">60</xref>
,
<xref ref-type="bibr" rid="B61">61</xref>
] leading us to regard it as one single study.</p>
<p>In 22 studies, a cognitive rehabilitation intervention, dual-task training or a computerized intervention were used as the only intervention for the participants [
<xref ref-type="bibr" rid="B32">32</xref>
,
<xref ref-type="bibr" rid="B45">45</xref>
-
<xref ref-type="bibr" rid="B47">47</xref>
,
<xref ref-type="bibr" rid="B49">49</xref>
-
<xref ref-type="bibr" rid="B52">52</xref>
,
<xref ref-type="bibr" rid="B54">54</xref>
-
<xref ref-type="bibr" rid="B63">63</xref>
,
<xref ref-type="bibr" rid="B66">66</xref>
-
<xref ref-type="bibr" rid="B70">70</xref>
]. In six studies the interventions were applied as additional items to a traditional physical or balance training [
<xref ref-type="bibr" rid="B44">44</xref>
,
<xref ref-type="bibr" rid="B48">48</xref>
,
<xref ref-type="bibr" rid="B53">53</xref>
,
<xref ref-type="bibr" rid="B64">64</xref>
,
<xref ref-type="bibr" rid="B65">65</xref>
,
<xref ref-type="bibr" rid="B71">71</xref>
]. The reported outcomes involved different assessments of balance, gait or functional mobility. Balance was assessed with the help of postural sway measurements [
<xref ref-type="bibr" rid="B32">32</xref>
,
<xref ref-type="bibr" rid="B44">44</xref>
,
<xref ref-type="bibr" rid="B51">51</xref>
,
<xref ref-type="bibr" rid="B52">52</xref>
,
<xref ref-type="bibr" rid="B57">57</xref>
,
<xref ref-type="bibr" rid="B62">62</xref>
,
<xref ref-type="bibr" rid="B67">67</xref>
,
<xref ref-type="bibr" rid="B71">71</xref>
], with the Berg Balance Scale [
<xref ref-type="bibr" rid="B44">44</xref>
,
<xref ref-type="bibr" rid="B47">47</xref>
,
<xref ref-type="bibr" rid="B49">49</xref>
,
<xref ref-type="bibr" rid="B51">51</xref>
,
<xref ref-type="bibr" rid="B53">53</xref>
,
<xref ref-type="bibr" rid="B55">55</xref>
,
<xref ref-type="bibr" rid="B60">60</xref>
-
<xref ref-type="bibr" rid="B64">64</xref>
], with the Activities-specific Balance Confidence Scale [
<xref ref-type="bibr" rid="B44">44</xref>
,
<xref ref-type="bibr" rid="B47">47</xref>
,
<xref ref-type="bibr" rid="B49">49</xref>
,
<xref ref-type="bibr" rid="B51">51</xref>
,
<xref ref-type="bibr" rid="B55">55</xref>
,
<xref ref-type="bibr" rid="B60">60</xref>
-
<xref ref-type="bibr" rid="B62">62</xref>
,
<xref ref-type="bibr" rid="B68">68</xref>
], with the Functional Balance and Mobility test [
<xref ref-type="bibr" rid="B32">32</xref>
], with the Balance Index [
<xref ref-type="bibr" rid="B63">63</xref>
] and with one-leg-stance tests [
<xref ref-type="bibr" rid="B59">59</xref>
,
<xref ref-type="bibr" rid="B66">66</xref>
]. Gait measurements included measurements of kinematic parameters [
<xref ref-type="bibr" rid="B44">44</xref>
,
<xref ref-type="bibr" rid="B48">48</xref>
-
<xref ref-type="bibr" rid="B50">50</xref>
,
<xref ref-type="bibr" rid="B60">60</xref>
,
<xref ref-type="bibr" rid="B61">61</xref>
,
<xref ref-type="bibr" rid="B68">68</xref>
,
<xref ref-type="bibr" rid="B70">70</xref>
], the Timed Up & Go Test [
<xref ref-type="bibr" rid="B44">44</xref>
,
<xref ref-type="bibr" rid="B47">47</xref>
-
<xref ref-type="bibr" rid="B49">49</xref>
,
<xref ref-type="bibr" rid="B62">62</xref>
,
<xref ref-type="bibr" rid="B64">64</xref>
,
<xref ref-type="bibr" rid="B66">66</xref>
], the Dynamic Gait Index [
<xref ref-type="bibr" rid="B47">47</xref>
,
<xref ref-type="bibr" rid="B49">49</xref>
,
<xref ref-type="bibr" rid="B62">62</xref>
], or step-recording with pedometers [
<xref ref-type="bibr" rid="B58">58</xref>
]. Functional Mobility assessments were determined by manual ability measurements [
<xref ref-type="bibr" rid="B45">45</xref>
,
<xref ref-type="bibr" rid="B54">54</xref>
], functional reach tests [
<xref ref-type="bibr" rid="B64">64</xref>
], the Physical Performance Test [
<xref ref-type="bibr" rid="B65">65</xref>
], the Rivermead Motor Assessment [
<xref ref-type="bibr" rid="B57">57</xref>
], The Nottingham 10 Point ADL Scale [
<xref ref-type="bibr" rid="B57">57</xref>
], the Box and Block Test [
<xref ref-type="bibr" rid="B45">45</xref>
,
<xref ref-type="bibr" rid="B54">54</xref>
,
<xref ref-type="bibr" rid="B56">56</xref>
] and the Fugl-Meyer Assessment of Upper Limb Motor Function [
<xref ref-type="bibr" rid="B50">50</xref>
,
<xref ref-type="bibr" rid="B54">54</xref>
,
<xref ref-type="bibr" rid="B69">69</xref>
,
<xref ref-type="bibr" rid="B71">71</xref>
].</p>
</sec>
<sec>
<title>Methods used and their effects</title>
<sec>
<title>A. Cognitive rehabilitation interventions</title>
<p>From the three articles evaluating the effects of a cognitive rehabilitation intervention on motor outcomes, two examined the effects of mental imagery on physical functioning of older adults aged between 65 and 90 years [
<xref ref-type="bibr" rid="B44">44</xref>
,
<xref ref-type="bibr" rid="B51">51</xref>
]. In the third study, the participants were community-dwelling adults between 44 and 79 years of age suffering from hemiparetic stroke [
<xref ref-type="bibr" rid="B50">50</xref>
]. The three studies investigated the effect of mental imagery training on postural balance [
<xref ref-type="bibr" rid="B44">44</xref>
,
<xref ref-type="bibr" rid="B51">51</xref>
] and on gait [
<xref ref-type="bibr" rid="B44">44</xref>
,
<xref ref-type="bibr" rid="B50">50</xref>
]. Mental imagery training consisted of either visual imagery training, i.e. participants are expected to view themselves from the perspective of an external observer, or of kinesthetic imagery exercise, i.e. participants imagine experiencing bodily sensations that might be expected in the exercise. The trainings lasted six weeks with a training frequency ranging from daily [
<xref ref-type="bibr" rid="B51">51</xref>
], twice weekly [
<xref ref-type="bibr" rid="B44">44</xref>
] to three times weekly [
<xref ref-type="bibr" rid="B50">50</xref>
]. Two studies used a pure cognitive rehabilitation method [
<xref ref-type="bibr" rid="B50">50</xref>
,
<xref ref-type="bibr" rid="B51">51</xref>
] whereas one study combined mental practice with additional physical exercise [
<xref ref-type="bibr" rid="B44">44</xref>
].</p>
<p>The studies show reduction of postural sway [
<xref ref-type="bibr" rid="B51">51</xref>
], and improvements in gait speed [
<xref ref-type="bibr" rid="B44">44</xref>
] and gait symmetry [
<xref ref-type="bibr" rid="B50">50</xref>
]. No improvements were shown for balance confidence [
<xref ref-type="bibr" rid="B44">44</xref>
].</p>
<p>Hamel and Lajoies' [
<xref ref-type="bibr" rid="B51">51</xref>
] results show a significant reduction of antero-posterior postural oscillations suggesting that mental imagery training over a six-week period helps to improve postural control of the elderly. The study of Batson et al. [
<xref ref-type="bibr" rid="B44">44</xref>
] combined mental imagery with physical exercise. The control group underwent a health education program in addition to the physical training. Gait speed, expressed by improvement in Timed Up-and-Go test performance, increased for all study participants. These results imply that the improvement in gait speed were attaint through the physical practice regardless of whether combined with mental imagery or not. This conjecture is supported by the fact that the two groups under observation converge to each other for the Timed Up-and-Go test measures following the intervention. In the pretest phase, there was a large, meaningful difference for the Timed Up-and-Go test between the mental imagery and physical practice subjects (Cohen's
<italic>d </italic>
= 1.2) that decreases to Cohen's
<italic>d </italic>
= 0.55 at the end of intervention. The results showed no improvement in balance confidence, as expressed by non significant results neither on the Berg Balance Scale nor on the Activities-specific Balance Confidence Scale. The study of Dunsky et al. [
<xref ref-type="bibr" rid="B50">50</xref>
] showed improvements of spatiotemporal gait parameters and gait symmetry in people with chronic poststroke hemiparesis after mental imagery. There was no control group in this study to support these results.</p>
</sec>
<sec>
<title>B. Dual-task interventions</title>
<p>The methods varied from walking or balancing with a concurrent mental task like memorizing words, reciting poems, or computing mental arithmetic tasks [
<xref ref-type="bibr" rid="B60">60</xref>
-
<xref ref-type="bibr" rid="B62">62</xref>
,
<xref ref-type="bibr" rid="B66">66</xref>
,
<xref ref-type="bibr" rid="B70">70</xref>
] to a square-stepping exercise where participants executed forward, backward, lateral and oblique step patterns on a thin felt mat [
<xref ref-type="bibr" rid="B58">58</xref>
,
<xref ref-type="bibr" rid="B59">59</xref>
]. The training lasted between 4 weeks [
<xref ref-type="bibr" rid="B60">60</xref>
-
<xref ref-type="bibr" rid="B62">62</xref>
], 6 weeks [
<xref ref-type="bibr" rid="B70">70</xref>
] or 12 weeks [
<xref ref-type="bibr" rid="B58">58</xref>
,
<xref ref-type="bibr" rid="B59">59</xref>
,
<xref ref-type="bibr" rid="B66">66</xref>
]. No dual-task study was found on stroke patients or people with traumatic brain injury. The study of Shigematsu et al. [
<xref ref-type="bibr" rid="B58">58</xref>
] showed improvements in functional fitness of lower extremities. The results on gait patterns and postural sway are controversial. Silsupadol et al. [
<xref ref-type="bibr" rid="B60">60</xref>
-
<xref ref-type="bibr" rid="B62">62</xref>
] showed improvement of gait speed under dual-task conditions and a reduction of body sway, whereas You et al. [
<xref ref-type="bibr" rid="B70">70</xref>
] and Vaillant et al. [
<xref ref-type="bibr" rid="B66">66</xref>
] found no improvements in gait and stability after a dual-task intervention. No other physical outcomes were reported.</p>
<p>The studies conducted by Silsupadol et al. [
<xref ref-type="bibr" rid="B60">60</xref>
-
<xref ref-type="bibr" rid="B62">62</xref>
] compared three different balance training approaches: single-task balance training, dual-task balance training with fixed-priorities and dual-task balance training with variable-priority. Single-task training consisted of exercises for body stability with or without object manipulation and/or body transport. In the dual-task condition, concurrent auditory and visual discrimination tasks and computing tasks were added to the balance training. In the fixed-priority condition the subject was instructed to direct the attention with equal priority to both the postural and additional tasks. In the variable-priority condition half the training was done with the instruction to mainly prioritize the postural task and the other half with the instruction to mainly prioritize the additional task. All participants improved self-selected gait speed under single-task testing conditions. Under dual-task testing conditions, however, only participants who received dual-task training showed significant improvements in self-selected gait speed (with moderate effect sizes of 0.57 between single-task and fixed-priority and 0.46 between single-task and variable-priority). All groups significantly improved on the Berg Balance Scale under single-task conditions. Participants in the variable-priority training group additionally showed an average of 56% reduction in body sway compared to only 30% of the fixed-priority and single-task group. Overall, the study showed that variable-priority instruction was more effective in improving both balance and physical performance under dual-task conditions than either the single-task or the fixed-priority training approaches. In contrast to the fixed-priority training group, the variable-priority group showed long-term maintenance effects on dual-task gait speed for three months after the end of training.</p>
<p>In contrast to the results of Silsupadol et al., You and colleagues [
<xref ref-type="bibr" rid="B70">70</xref>
] found no improvements in gait and stability after their dual-task intervention that lasted six weeks. Results of the gait tests showed a significant increase in gait velocity in the control group which underwent single-task training but not in the experimental group. No statistically significant differences in the deviation of mediolateral and anteroposterior centre of pressure were found between the groups. Vaillant et al. [
<xref ref-type="bibr" rid="B66">66</xref>
] did not find additional improvements through the addition of a cognitive task to the physical task either. The exercise sessions were effective in improving performance on two balance tests, improvements, however, were not attributable to the dual-task training.</p>
<p>Shigematsu et al. [
<xref ref-type="bibr" rid="B58">58</xref>
,
<xref ref-type="bibr" rid="B59">59</xref>
] developed an alternative approach to exercise for dual-task abilities in community-dwelling older adults. A square stepping exercise was performed on a thin mat with the instruction to step from one end of the mat to the other according to a step pattern provided, which could be made progressively more complex. Results showed that square stepping exercise was equally effective as strength training to improve lower-extremity functional fitness. Compared to a weekly walking session, however, participants of the square stepping exercise group showed a greater improvement in functional fitness of the lower-extremity.</p>
</sec>
<sec>
<title>C. Computerized interventions</title>
<p>Nineteen studies investigated the effects of a computerized intervention to improve physical abilities. The studies were distributed over the populations of interest as follows: nine interventions treating older adults [
<xref ref-type="bibr" rid="B32">32</xref>
,
<xref ref-type="bibr" rid="B46">46</xref>
-
<xref ref-type="bibr" rid="B48">48</xref>
,
<xref ref-type="bibr" rid="B52">52</xref>
,
<xref ref-type="bibr" rid="B53">53</xref>
,
<xref ref-type="bibr" rid="B55">55</xref>
,
<xref ref-type="bibr" rid="B65">65</xref>
,
<xref ref-type="bibr" rid="B67">67</xref>
], nine interventions treating patients with stroke [
<xref ref-type="bibr" rid="B45">45</xref>
,
<xref ref-type="bibr" rid="B49">49</xref>
,
<xref ref-type="bibr" rid="B54">54</xref>
,
<xref ref-type="bibr" rid="B57">57</xref>
,
<xref ref-type="bibr" rid="B63">63</xref>
,
<xref ref-type="bibr" rid="B64">64</xref>
,
<xref ref-type="bibr" rid="B68">68</xref>
,
<xref ref-type="bibr" rid="B69">69</xref>
,
<xref ref-type="bibr" rid="B71">71</xref>
] and one study treating young adults with traumatic brain injury [
<xref ref-type="bibr" rid="B56">56</xref>
]. Fifteen studies investigated the effects on lower extremities [
<xref ref-type="bibr" rid="B32">32</xref>
,
<xref ref-type="bibr" rid="B46">46</xref>
-
<xref ref-type="bibr" rid="B49">49</xref>
,
<xref ref-type="bibr" rid="B52">52</xref>
,
<xref ref-type="bibr" rid="B53">53</xref>
,
<xref ref-type="bibr" rid="B55">55</xref>
,
<xref ref-type="bibr" rid="B57">57</xref>
,
<xref ref-type="bibr" rid="B63">63</xref>
-
<xref ref-type="bibr" rid="B65">65</xref>
,
<xref ref-type="bibr" rid="B67">67</xref>
,
<xref ref-type="bibr" rid="B68">68</xref>
,
<xref ref-type="bibr" rid="B71">71</xref>
], whereas four studies analyzed the effects on upper extremities [
<xref ref-type="bibr" rid="B45">45</xref>
,
<xref ref-type="bibr" rid="B54">54</xref>
,
<xref ref-type="bibr" rid="B56">56</xref>
,
<xref ref-type="bibr" rid="B69">69</xref>
]. The interventions included various methods and ideas for the implementation of computers into a training session. Talassi et al. [
<xref ref-type="bibr" rid="B65">65</xref>
] used a computerized cognitive program [
<xref ref-type="bibr" rid="B72">72</xref>
,
<xref ref-type="bibr" rid="B73">73</xref>
], to stimulate cognitive functions, e.g. visual search, episodic memory or semantic verbal fluency, by a specific group of exercise for older adults with mild cognitive impairments or mild dementia. Buccello-Stout et al. [
<xref ref-type="bibr" rid="B46">46</xref>
] used a sensorimotor adaptation training to improve functional mobility in older adults. Participants walked on a treadmill while viewing a rotating virtual scene providing a perceptual-motor mismatch [
<xref ref-type="bibr" rid="B46">46</xref>
].</p>
<p>Seven studies used the method of computerized dynamic balance training with visual feedback technique [
<xref ref-type="bibr" rid="B52">52</xref>
,
<xref ref-type="bibr" rid="B53">53</xref>
,
<xref ref-type="bibr" rid="B55">55</xref>
,
<xref ref-type="bibr" rid="B57">57</xref>
,
<xref ref-type="bibr" rid="B63">63</xref>
,
<xref ref-type="bibr" rid="B67">67</xref>
,
<xref ref-type="bibr" rid="B71">71</xref>
]. The tasks required to move through weight-shifting a cursor on a screen representing the centre of pressure (COP) position to specified targets [
<xref ref-type="bibr" rid="B32">32</xref>
,
<xref ref-type="bibr" rid="B53">53</xref>
,
<xref ref-type="bibr" rid="B55">55</xref>
,
<xref ref-type="bibr" rid="B63">63</xref>
,
<xref ref-type="bibr" rid="B67">67</xref>
] or on a predefined sine wave trajectory [
<xref ref-type="bibr" rid="B52">52</xref>
]. In one study, the feedback signal displayed the weight distribution and weight shifting with moving columns, showing stance symmetry [
<xref ref-type="bibr" rid="B57">57</xref>
]. In another study researchers designed the task of visual feedback training in a more playful way, projecting the cursor for centre of pressure as a caterpillar moving on the screen [
<xref ref-type="bibr" rid="B71">71</xref>
]</p>
<p>A total of ten studies described an approach which included interactive virtual reality games or applications [
<xref ref-type="bibr" rid="B32">32</xref>
,
<xref ref-type="bibr" rid="B45">45</xref>
,
<xref ref-type="bibr" rid="B47">47</xref>
-
<xref ref-type="bibr" rid="B49">49</xref>
,
<xref ref-type="bibr" rid="B54">54</xref>
,
<xref ref-type="bibr" rid="B56">56</xref>
,
<xref ref-type="bibr" rid="B64">64</xref>
,
<xref ref-type="bibr" rid="B68">68</xref>
,
<xref ref-type="bibr" rid="B69">69</xref>
]. Seven studies out of this ten were conducted on stroke patients [
<xref ref-type="bibr" rid="B32">32</xref>
,
<xref ref-type="bibr" rid="B45">45</xref>
,
<xref ref-type="bibr" rid="B49">49</xref>
,
<xref ref-type="bibr" rid="B54">54</xref>
,
<xref ref-type="bibr" rid="B64">64</xref>
,
<xref ref-type="bibr" rid="B68">68</xref>
,
<xref ref-type="bibr" rid="B69">69</xref>
], two studies on older adults [
<xref ref-type="bibr" rid="B47">47</xref>
,
<xref ref-type="bibr" rid="B48">48</xref>
] and one on patients with traumatic brain injury [
<xref ref-type="bibr" rid="B56">56</xref>
]. The virtual reality applications were varied. There were elaborated and expensive systems, enabling the participants to see themselves in the virtual environment and to play games like juggling a virtual ball [
<xref ref-type="bibr" rid="B32">32</xref>
] or saving a ball as a soccer keeper [
<xref ref-type="bibr" rid="B54">54</xref>
]. Virtual devices consisting of a semi-immersive workbench with which participants were able to reach and interact with three-dimensional objects [
<xref ref-type="bibr" rid="B45">45</xref>
], a table-top virtual-reality based system requiring the patients to move an object to cued locations while receiving augmented movement feedback [
<xref ref-type="bibr" rid="B56">56</xref>
] and virtual-reality based treadmill training [
<xref ref-type="bibr" rid="B68">68</xref>
]. Furthermore, commercially available low-cost interactive video game console systems [
<xref ref-type="bibr" rid="B47">47</xref>
,
<xref ref-type="bibr" rid="B49">49</xref>
,
<xref ref-type="bibr" rid="B64">64</xref>
,
<xref ref-type="bibr" rid="B69">69</xref>
] or dance simulation games [
<xref ref-type="bibr" rid="B48">48</xref>
] were applied.</p>
<p>The computerized cognitive training program proposed by Talassi et al. [
<xref ref-type="bibr" rid="B65">65</xref>
] produced an improvement in functional status, measured by the Physical Performance Test [
<xref ref-type="bibr" rid="B74">74</xref>
], in patients with mild cognitive impairments, while a physical rehabilitation program did not show any significant effects. The sensorimotor adaptation training for older adults developed by Buccello-Stout et al. [
<xref ref-type="bibr" rid="B46">46</xref>
] resulted in better performance on an obstacle course after the intervention compared to the control group, who walked on the treadmill without rotation of the virtual scenario.</p>
<p>Some of the interventions providing balance training with visual feedback improved simple auditory reaction time [
<xref ref-type="bibr" rid="B32">32</xref>
,
<xref ref-type="bibr" rid="B55">55</xref>
] postural balance and stability [
<xref ref-type="bibr" rid="B32">32</xref>
,
<xref ref-type="bibr" rid="B55">55</xref>
,
<xref ref-type="bibr" rid="B57">57</xref>
,
<xref ref-type="bibr" rid="B63">63</xref>
,
<xref ref-type="bibr" rid="B67">67</xref>
,
<xref ref-type="bibr" rid="B71">71</xref>
], gait speed [
<xref ref-type="bibr" rid="B63">63</xref>
], functional status, and performance [
<xref ref-type="bibr" rid="B55">55</xref>
,
<xref ref-type="bibr" rid="B57">57</xref>
,
<xref ref-type="bibr" rid="B63">63</xref>
,
<xref ref-type="bibr" rid="B71">71</xref>
]. The intervention conducted by Hatzitaki et al. [
<xref ref-type="bibr" rid="B52">52</xref>
] revealed that weight-shifting training in antero/posterior direction only induces improvements in standing balance of older adults. In contrast, the studies of Lajoie et al. [
<xref ref-type="bibr" rid="B55">55</xref>
] and Bisson et al. [
<xref ref-type="bibr" rid="B32">32</xref>
] showed no improvements in postural sway after computerized balance training in older adults. Hinman and colleagues [
<xref ref-type="bibr" rid="B53">53</xref>
] also found no improvements neither in balance, gait speed nor in simple reaction time compared to the control group. The results of Kerdoncuff et al. [
<xref ref-type="bibr" rid="B71">71</xref>
] even showed a reduction of gait speed in stroke patients treated with visual biofeedback compared to an increase in gait speed for the control group treated with a traditional physical rehabilitation program.</p>
<p>The methods using immersive computer technologies resulted in improved motor functions of upper extremities and a cortical activation by the affected movements from contralesional to ipsilesional activation in the laterality index after virtual reality intervention in patients with chronic stroke [
<xref ref-type="bibr" rid="B54">54</xref>
]. Older adults benefited from training in terms of improved functional abilities, postural control and simple auditory reaction times [
<xref ref-type="bibr" rid="B32">32</xref>
]. A virtual rehabilitation program with the help of a semi-immersive virtual reality workbench, in a non-hospital environment, resulted in qualitatively improved manual trajectories and increased movement velocity of the trained upper extremities for patients with stroke, without any transfer to real-life activities [
<xref ref-type="bibr" rid="B45">45</xref>
].</p>
<p>A virtual reality-based treadmill intervention conducted by Yang et al. [
<xref ref-type="bibr" rid="B68">68</xref>
] requested patients with stroke to walk on a treadmill while observing a virtual scenario of the typical regional community. The scenarios consisted of lane walking, street crossing, striding across obstacles, and park stroll with increasing levels of complexity. Participants improved their walking speed and walking ability at post-training as well as after one month after the training.</p>
<p>Effects on motor functions were also observed in studies using so-called off the shelf computer game systems. Four studies proposed a training program using the Nintendo Wii console [
<xref ref-type="bibr" rid="B47">47</xref>
,
<xref ref-type="bibr" rid="B49">49</xref>
,
<xref ref-type="bibr" rid="B64">64</xref>
,
<xref ref-type="bibr" rid="B69">69</xref>
]. Three of them were case studies and exemplified that a training with a commercially available computer game system can be applied for older adults [
<xref ref-type="bibr" rid="B47">47</xref>
] and for the treatment of balance problems after stroke [
<xref ref-type="bibr" rid="B49">49</xref>
,
<xref ref-type="bibr" rid="B64">64</xref>
]. The participants performed physical training using the Wii Fit system. Using the approach of the weight-shifting method with visual feedback, the Wii Fit games were controlled by shifting body weight on the platform combined with a challenging game [
<xref ref-type="bibr" rid="B64">64</xref>
]. The activities on the Nintendo Wii console were selected to practice balance, coordination, strengthening, endurance or bilateral upper extremity coordination [
<xref ref-type="bibr" rid="B47">47</xref>
,
<xref ref-type="bibr" rid="B49">49</xref>
]. Subjects very much enjoyed the interventions resulting in better balance and mobility performance [
<xref ref-type="bibr" rid="B47">47</xref>
,
<xref ref-type="bibr" rid="B64">64</xref>
], improvements in gait speed, gait endurance and balance [
<xref ref-type="bibr" rid="B49">49</xref>
]. A recently published study using the Nintendo Wii console [
<xref ref-type="bibr" rid="B69">69</xref>
] resulted in improvements in upper extremity functions in post stroke patients.</p>
<p>A study conducted by de Bruin et al. [
<xref ref-type="bibr" rid="B48">48</xref>
] studied the transfer effects on gait characteristics of elderly who executed a traditional progressive physical balance and resistance training with integrated computer game dancing. The task of the dancing game consisted of stepping on arrows on a dance pad. Results indicated a positive effect of the computer game dancing training on relative dual-task costs of walking, e.g., stride time and step length. The more traditional physical training showed no transfer effects on dual-task costs related gait characteristics.</p>
</sec>
</sec>
<sec>
<title>Quality evaluation</title>
<p>The agreement on study quality between the two reviewers was almost perfect. The estimated Kappa value was 0.96 with a confidence interval ranging between 0.95 and 0.98. The percentage of agreement between the two reviewers was 98.18%. The quality scores ranged from 7 to 22 points out of a maximum of 22. The mean quality score was 13.46 points (range: 7-22 points), the median value was 6.5 points and the mode was 12 points. The mean score for reporting was 6.57 points (maximum: 9 points; range: 4-9 points), for external validity 0.68 (maximum: 2 points; range: 0-2 points), for internal validity (bias) 3.71 points (maximum: 5 points; range: 2-5 points), for internal validity (confounding) 2.25 (maximum: 4 points; range: 0-4 points).</p>
<p>Additional file
<xref ref-type="supplementary-material" rid="S2">2</xref>
summarizes the results of the quality assessment for the three intervention types: cognitive rehabilitation interventions, dual-task interventions, and computerized interventions.</p>
</sec>
</sec>
<sec>
<title>Discussion</title>
<p>An increased incidence of falls among older adults is one of the most serious problems of mobility impairment. It has been suggested that effective programs to prevent falls in older adults should focus on training both physical and cognitive aspects. The aim of this systematic review was to examine the literature on the effects of cognitive and motor-cognitive interventions to improve physical functioning of older adults with additional insights from studies conducted with brain injured adults or patients with stroke.</p>
<p>Our search resulted in relatively few studies that evaluated a cognitive or a motor-cognitive intervention. Twenty-eight articles were found including studies with older adults or patients with neurological impairments. Our results show that the method of combining physical exercise with cognitive elements to improve physical functioning is not yet systematically part of the current interventions for older adults or patients with neurological impairments. The methodological heterogeneity and the numerous feasibility studies are indicators for a topic still being in its fledgling stage.</p>
<p>The results of the few studies identified in this review, however, justify larger studies with older adults. There is evidence that cognitive or motor-cognitive interventions positively affect physical functioning, such as postural control, walking abilities and general functions of upper and lower extremities. The majority of the included studies resulted in improvements of the assessed functional outcome measures. The next sections will discuss the three different intervention types applied in more detail.</p>
<sec>
<title>Cognitive rehabilitation interventions</title>
<p>The prevalent technique used was mental imagery, which involved the participants imagining themselves in a specific environment or performing a specific activity, without actually performing it [
<xref ref-type="bibr" rid="B75">75</xref>
]. Brain-imaging studies showed that comparable brain areas are activated during actual performance and during mental rehearsal of the same tasks [
<xref ref-type="bibr" rid="B76">76</xref>
,
<xref ref-type="bibr" rid="B77">77</xref>
]. Hamel and Lajoie's [
<xref ref-type="bibr" rid="B51">51</xref>
] suggest that after mental imagery the motor control task becomes more automatic, leading to a decrease in attentional demands directed toward the control of the motor task.</p>
<p>Our search resulted in three relevant studies that applied mental imagery. In one study [
<xref ref-type="bibr" rid="B44">44</xref>
] improvements in physical functioning were shown in both the intervention and the control group and in a second study [
<xref ref-type="bibr" rid="B50">50</xref>
], a missing control group made it impossible to assess whether improvements in physical functioning were attained through mental practice or not. Thus, as for now it is not possible to determine whether an isolated cognitive rehabilitation intervention based on mental imagery is able to improve physical functioning in older adults. There is evidence about the effectiveness of mental imagery in improving physical functioning of other populations than older adults [
<xref ref-type="bibr" rid="B25">25</xref>
,
<xref ref-type="bibr" rid="B75">75</xref>
]. It seems fair to state that larger randomized control studies should be performed in order to provide more insights in the impact of mental imagery in older adults.</p>
</sec>
<sec>
<title>Dual-task interventions</title>
<p>Research has shown that dual-task interventions may help participants to automate a task, to focus on other tasks and consequently, to free the individual's processing capacity. After dual-task exercise more attention is available to process external information and therefore to react faster on sudden disturbances [
<xref ref-type="bibr" rid="B32">32</xref>
]. The included studies showed that it was generally feasible to apply dual-task interventions, namely combining a traditional physical intervention with a variety of cognitive tasks, in community-dwelling older adults with balance impairments. During the selection stage of this review, numerous studies were identified studying the dual-task abilities of older adults, though only six studies were found which integrated the method of dual-tasking in a program designed to improve physical functioning. Two studies included relatively simple cognitive tasks like computing or reciting poems. Both studies showed no improvements in physical functioning that were clearly attributable to the dual-task intervention.</p>
<p>Using dual-task exercises with variable-priority or using a complex stepping task may both be closer to real-life conditions as compared to computing while walking. The studies of Silsupadol et al. [
<xref ref-type="bibr" rid="B60">60</xref>
-
<xref ref-type="bibr" rid="B62">62</xref>
] and Shigematsu et al. [
<xref ref-type="bibr" rid="B58">58</xref>
,
<xref ref-type="bibr" rid="B59">59</xref>
] applied a more challenging way of attentional demanding tasks, and, presumably thus, offered advantages in terms of rate of learning compared to more simple cognitive tasks. Results show improvements in functional fitness of lower extremities, balance and gait speed. The latter has been reported as a global indicator of functional performance in older adults and is a good predictor of falls [
<xref ref-type="bibr" rid="B78">78</xref>
].</p>
<p>Shigematsu and colleagues in addition provided a challenging leg exercise which was suggested to enhance neural functions by reducing response latency and by effectively recruiting postural muscles resulting in an improving of the interpretation of sensory information. Caution seems to be indicated in relation to the transfer effects of this form of training. The pre- and post-tests that were used to assess the effects of training were similar to the cognitive and motor tasks assigned in the interventions. Thus, it cannot be excluded that learning effects were observed instead of real improvements in underlying functional motor skills. From this viewpoint, it is not surprising that participants in dual-task-groups performed better in the post-tests.</p>
<p>The dual-task interventions showed satisfying study quality with a mean of 16.2 points out of a maximum of 22 points. However, the results about the effect of dual-task interventions on physical functioning are controversial. In addition, analogue to the cognitive rehabilitation interventions, the limited number of studies performing dual-task training hampers a generalization of results.</p>
</sec>
<sec>
<title>Computerized interventions</title>
<p>Computerized interventions varied from force platforms with visual biofeedback with relatively simple graphics [
<xref ref-type="bibr" rid="B52">52</xref>
,
<xref ref-type="bibr" rid="B53">53</xref>
,
<xref ref-type="bibr" rid="B55">55</xref>
,
<xref ref-type="bibr" rid="B57">57</xref>
,
<xref ref-type="bibr" rid="B67">67</xref>
,
<xref ref-type="bibr" rid="B71">71</xref>
], to video capture systems that enabled the participant to see her/himself on a screen with attractive and realistic graphics allowing to immerge into the virtual environment [
<xref ref-type="bibr" rid="B32">32</xref>
,
<xref ref-type="bibr" rid="B46">46</xref>
,
<xref ref-type="bibr" rid="B54">54</xref>
,
<xref ref-type="bibr" rid="B68">68</xref>
]. A third set of studies used commercially available video game consoles that combined the simplicity of a weight-shifting training on a platform with the elaborated graphics and motivating games of a video capture system [
<xref ref-type="bibr" rid="B47">47</xref>
-
<xref ref-type="bibr" rid="B49">49</xref>
,
<xref ref-type="bibr" rid="B64">64</xref>
,
<xref ref-type="bibr" rid="B69">69</xref>
]. The study quality of the computerized interventions articles was lower (mean value of 12.8 points out of a maximum of 22 points) as compared with the value of the dual-task studies (16.2 points). In contrast to the dual-task interventions, however, the results of the computerized interventions showed a consistent positive effect on various physical abilities in older adults, patients with traumatic brain injury, and stroke patients. Computerized interventions can also be effectively used in clinical settings. Remarkable is that every study reported that participants were more motivated and compliant with the computerized setting in comparison to conventional physical training programs. Computerized interventions may have engaged people who otherwise would lack interest to undergo a traditional exercise program.</p>
<p>The effects of the video games on cognitive aspects of the participants have, remarkably, not been a specific focus of the various studies. It seems, however, that computer games have the potential to also train cognitive functions [
<xref ref-type="bibr" rid="B34">34</xref>
], including attention and executive functions [
<xref ref-type="bibr" rid="B22">22</xref>
]. Combined with physical exercise a video game or a virtual environment requires sensory-motor function inputs as well as cognitive inputs. The participant is required to orientate her/himself, attend, comprehend, recall, plan and execute appropriate responses to the visual cues provided on the screen [
<xref ref-type="bibr" rid="B69">69</xref>
]. The visual aspect is crucial since with aging, vision remains important in maintaining postural control [
<xref ref-type="bibr" rid="B79">79</xref>
]. Virtual environments have also the potential to specifically include motor learning enhancing features that activate motor areas in the brain [
<xref ref-type="bibr" rid="B80">80</xref>
]. In addition You and colleagues suggest that virtual reality training could induce reorganization of the sensorimotor cortex in chronic patients [
<xref ref-type="bibr" rid="B81">81</xref>
].</p>
<p>As we know from the principles of motor learning, repetition is important for both motor learning and the cortical changes that initiate it. The repeated practice must be linked to incremental success at some task or goal. A computerized intervention constitutes a powerful tool to provide participant repetitive practice, feedback about performance and motivation to endure practice [
<xref ref-type="bibr" rid="B82">82</xref>
]. In addition, it can be adapted based on an individual participant's baseline motor performance and be progressively augmented in task difficulty. Weiss and colleagues [
<xref ref-type="bibr" rid="B83">83</xref>
] suggested that virtual reality platforms provide a number of unique advantages over conventional therapy in trying to achieve rehabilitation goals. First, virtual reality systems provide ecologically valid scenarios that elicit naturalistic movement and behaviors in a safe environment that can be shaped and graded in accordance to the needs and level of ability of the patient engaging in therapy. Secondly, the realism of the virtual environments gives patients the opportunity to explore independently, increasing their sense of autonomy and independence in directing their own therapeutic experience. Thirdly, the controllability of virtual environments allows for consistency in the way therapeutic protocols are delivered and performance recorded, enabling an accurate comparison of a patient's performance over time. Finally, virtual reality systems allow the introduction of "gaming" factors into any scenario to enhance motivation and increase user participation [
<xref ref-type="bibr" rid="B84">84</xref>
]. The use of gaming elements can also be used to take patients' attention away from any pain resulting from their injury or movement. This occurs the more a patient feels involved in an activity and again, allows a higher level of participation in the activity, as the patient is focused on achieving goals within the game [
<xref ref-type="bibr" rid="B85">85</xref>
]. In combination with the benefits of indoor exercises such as safety, independence from weather conditions, this distraction may result in a shift from negative to positive thoughts about exercise [
<xref ref-type="bibr" rid="B17">17</xref>
].</p>
</sec>
<sec>
<title>General methodological considerations</title>
<p>A central element of successful cognitive rehabilitation for older adults should be the design of interventions that either re-activate disused or damaged brain regions, or that compensates for decline in parts of the brain through the activation of compensatory neural reserves [
<xref ref-type="bibr" rid="B86">86</xref>
]. Cognitive activity or stimulation could be a protective factor against the functional losses in old age. Because spatial and temporal characteristics of gait are also associated with distinct brain networks in older adults it can be hypothesized that addressing focal neuronal losses in these networks may represent an important strategy to prevent mobility disability [
<xref ref-type="bibr" rid="B87">87</xref>
]. Interventions should, as previous research suggests, focus thereby on executive functioning processes [
<xref ref-type="bibr" rid="B9">9</xref>
], and in particular on the executive function component divided attention [
<xref ref-type="bibr" rid="B11">11</xref>
], and should include enriched environments that provide physical activities with decision-making opportunities because these are believed to be able to facilitate the development of both motor performance and brain functions [
<xref ref-type="bibr" rid="B88">88</xref>
]. This review encourages the further development of virtual reality interventions, preferably with a randomized control design. Future research that aims to examine the relation between virtual reality environments and improvements in both cognitive and walking skills, and the translation to better performance on selected physical tasks, should design the training content such that the relation between the cognitive and physical skills are more explicitly taken into account, e.g. specific elements of divided attention are integrated in the scenario.</p>
<p>Many of the studies of this review were small and may have lacked statistical power to demonstrate differences, if such differences were present. In addition, the interventions were of relatively short duration and heterogeneous in their design, and most subjects investigated were stroke survivors. Most studies did not specifically focus on physical functioning outcomes from which it is known that these relate to brain functioning. For example, spatial and temporal dual-task cost characteristics of gait are especially associated with divided attention in older adults [
<xref ref-type="bibr" rid="B11">11</xref>
], and are dependent of the nature of the task investigated (preferred versus fast walking).</p>
</sec>
<sec>
<title>Future directions</title>
<p>Future research that aims to examine the relation between improvements in cognitive skills and the translation to better performance on selected physical tasks should take the relation between the cognitive and physical skills into account. The majority of the authors, and above all this holds true for the studies using computerized interventions, does not specifically mention or is even not aware of the potential cognitive aspects of their interventions.</p>
</sec>
<sec>
<title>Limitations</title>
<p>We developed and utilized a structured study protocol to guide our search strategy, study selection, extraction of data and statistical analysis. However, limitations of this review should be noted. First, a publication bias may have been present, as well as a language bias, given that we considered only interventions described in published studies and restricted our search to English, French, and German language publications. Second, as there were only few randomized trials, we also included observational studies, the results of which may be affected by confounding bias due to the absence of random assignment. An additional limitation is that we did not investigate the effect of the interventions in separate populations. One study included in the analysis for example assessed subjects with MCI and dementia [
<xref ref-type="bibr" rid="B65">65</xref>
]. It can very well be argued that the results of cognitive interventions may be expected to be different between cognitively intact, MCI, and demented subjects. This point should be considered in future reviews on this topic.</p>
</sec>
</sec>
<sec>
<title>Conclusions</title>
<p>The current evidence on the effectiveness of cognitive or motor-cognitive interventions to improve physical functioning in older adults or patients with traumatic brain injury is limited. Yet overall, as the most studies included in this review showed, these interventions can enhance physical functioning. The heterogeneity of the studies published so far does not allow defining the training methodology with the greatest effectiveness. This review nevertheless provides important foundational information in order to encourage further development of novel cognitive or cognitive-motor interventions, preferably with a randomized control design. Future research that aims to examine the relation between improvements in cognitive skills and the translation to better performance on selected physical tasks should take the relation between the cognitive and physical skills into account. The majority of the authors, and above all this holds true for the studies using the computerized design, does not specifically mention or is even not aware of the potential cognitive aspects of their interventions.</p>
</sec>
<sec>
<title>Competing interests</title>
<p>The authors declare that they have no competing interests.</p>
</sec>
<sec>
<title>Authors' contributions</title>
<p>Conception and design: GP, EDdB; screening: GP, EDdB, data abstraction: GP, EDdB; data interpretation: GP, EDdB; manuscript drafting: GP, EDdB, PW; KM, GP, EDdB and PW critically revised the manuscript for its content and approved its final version.</p>
</sec>
<sec>
<title>Pre-publication history</title>
<p>The pre-publication history for this paper can be accessed here:</p>
<p>
<ext-link ext-link-type="uri" xlink:href="http://www.biomedcentral.com/1471-2318/11/29/prepub">http://www.biomedcentral.com/1471-2318/11/29/prepub</ext-link>
</p>
</sec>
<sec sec-type="supplementary-material">
<title>Supplementary Material</title>
<supplementary-material content-type="local-data" id="S1">
<caption>
<title>Additional File 1</title>
<p>Search strategy</p>
</caption>
<media xlink:href="1471-2318-11-29-S1.DOC" mimetype="application" mime-subtype="msword">
<caption>
<p>Click here for file</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="S2">
<caption>
<title>Additional File 2</title>
<p>Assessment of methodological quality</p>
</caption>
<media xlink:href="1471-2318-11-29-S2.DOC" mimetype="application" mime-subtype="msword">
<caption>
<p>Click here for file</p>
</caption>
</media>
</supplementary-material>
</sec>
</body>
<back>
<sec>
<title>Acknowledgements</title>
<p>The authors would like to thank Dr. Martina Gosteli of the Medicinal Library of the University of Zurich for her help in elaborating the search strategy.</p>
</sec>
<ref-list>
<ref id="B1">
<mixed-citation publication-type="journal">
<name>
<surname>Woollacott</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Shumway-Cook</surname>
<given-names>A</given-names>
</name>
<article-title>Attention and the control of posture and gait: a review of an emerging area of research</article-title>
<source>Gait Posture</source>
<year>2002</year>
<volume>16</volume>
<issue>1</issue>
<fpage>1</fpage>
<lpage>14</lpage>
<pub-id pub-id-type="doi">10.1016/S0966-6362(01)00156-4</pub-id>
<pub-id pub-id-type="pmid">12127181</pub-id>
</mixed-citation>
</ref>
<ref id="B2">
<mixed-citation publication-type="journal">
<name>
<surname>Hays</surname>
<given-names>RD</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Spritzer</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Cella</surname>
<given-names>D</given-names>
</name>
<article-title>Item response theory analyses of physical functioning items in the medical outcomes study</article-title>
<source>Med Care</source>
<year>2007</year>
<volume>45</volume>
<issue>5 Suppl 1</issue>
<fpage>S32</fpage>
<lpage>38</lpage>
<pub-id pub-id-type="pmid">17443117</pub-id>
</mixed-citation>
</ref>
<ref id="B3">
<mixed-citation publication-type="book">
<name>
<surname>Kane</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Radosevich</surname>
<given-names>DM</given-names>
</name>
<person-group person-group-type="editor">Brown M, Heverling C</person-group>
<article-title>Generic Health Outcomes Measures</article-title>
<source>Conducting Health Outcomes Research</source>
<year>2011</year>
<edition>1</edition>
<publisher-name>Sudbury: Jones & Bartlett Learning</publisher-name>
<fpage>91</fpage>
</mixed-citation>
</ref>
<ref id="B4">
<mixed-citation publication-type="journal">
<name>
<surname>Yogev-Seligmann</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Hausdorff</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Giladi</surname>
<given-names>N</given-names>
</name>
<article-title>The role of executive function and attention in gait</article-title>
<source>Mov Disord</source>
<year>2008</year>
<volume>23</volume>
<issue>3</issue>
<fpage>329</fpage>
<lpage>342</lpage>
<comment>quiz 472</comment>
<pub-id pub-id-type="doi">10.1002/mds.21720</pub-id>
<pub-id pub-id-type="pmid">18058946</pub-id>
</mixed-citation>
</ref>
<ref id="B5">
<mixed-citation publication-type="journal">
<name>
<surname>Sherrington</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Whitney</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Lord</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Herbert</surname>
<given-names>RD</given-names>
</name>
<name>
<surname>Cumming</surname>
<given-names>RG</given-names>
</name>
<name>
<surname>Close</surname>
<given-names>JC</given-names>
</name>
<article-title>Effective exercise for the prevention of falls: a systematic review and meta-analysis</article-title>
<source>J Am Geriatr Soc</source>
<year>2008</year>
<volume>56</volume>
<issue>12</issue>
<fpage>2234</fpage>
<lpage>2243</lpage>
<pub-id pub-id-type="doi">10.1111/j.1532-5415.2008.02014.x</pub-id>
<pub-id pub-id-type="pmid">19093923</pub-id>
</mixed-citation>
</ref>
<ref id="B6">
<mixed-citation publication-type="journal">
<name>
<surname>McDermott</surname>
<given-names>AY</given-names>
</name>
<name>
<surname>Mernitz</surname>
<given-names>H</given-names>
</name>
<article-title>Exercise and older patients: prescribing guidelines</article-title>
<source>Am Fam Physician</source>
<year>2006</year>
<volume>74</volume>
<issue>3</issue>
<fpage>437</fpage>
<lpage>444</lpage>
<pub-id pub-id-type="pmid">16913163</pub-id>
</mixed-citation>
</ref>
<ref id="B7">
<mixed-citation publication-type="journal">
<name>
<surname>Paterson</surname>
<given-names>DH</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>GR</given-names>
</name>
<name>
<surname>Rice</surname>
<given-names>CL</given-names>
</name>
<article-title>Ageing and physical activity: evidence to develop exercise recommendations for older adults</article-title>
<source>Can J Public Health</source>
<year>2007</year>
<volume>98</volume>
<issue>Suppl 2</issue>
<fpage>S69</fpage>
<lpage>108</lpage>
<pub-id pub-id-type="pmid">18213941</pub-id>
</mixed-citation>
</ref>
<ref id="B8">
<mixed-citation publication-type="journal">
<name>
<surname>Laessoe</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Hoeck</surname>
<given-names>HC</given-names>
</name>
<name>
<surname>Simonsen</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Voigt</surname>
<given-names>M</given-names>
</name>
<article-title>Residual attentional capacity amongst young and elderly during dual and triple task walking</article-title>
<source>Hum Mov Sci</source>
<year>2008</year>
<volume>27</volume>
<issue>3</issue>
<fpage>496</fpage>
<lpage>512</lpage>
<pub-id pub-id-type="doi">10.1016/j.humov.2007.12.001</pub-id>
<pub-id pub-id-type="pmid">18226839</pub-id>
</mixed-citation>
</ref>
<ref id="B9">
<mixed-citation publication-type="journal">
<name>
<surname>Rapport</surname>
<given-names>LJ</given-names>
</name>
<name>
<surname>Hanks</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Millis</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Deshpande</surname>
<given-names>SA</given-names>
</name>
<article-title>Executive functioning and predictors of falls in the rehabilitation setting</article-title>
<source>Arch Phys Med Rehabil</source>
<year>1998</year>
<volume>79</volume>
<issue>6</issue>
<fpage>629</fpage>
<lpage>633</lpage>
<pub-id pub-id-type="doi">10.1016/S0003-9993(98)90035-1</pub-id>
<pub-id pub-id-type="pmid">9630140</pub-id>
</mixed-citation>
</ref>
<ref id="B10">
<mixed-citation publication-type="journal">
<name>
<surname>Sheridan</surname>
<given-names>PL</given-names>
</name>
<name>
<surname>Solomont</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kowall</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Hausdorff</surname>
<given-names>JM</given-names>
</name>
<article-title>Influence of executive function on locomotor function: divided attention increases gait variability in Alzheimer's disease</article-title>
<source>J Am Geriatr Soc</source>
<year>2003</year>
<volume>51</volume>
<issue>11</issue>
<fpage>1633</fpage>
<lpage>1637</lpage>
<pub-id pub-id-type="doi">10.1046/j.1532-5415.2003.51516.x</pub-id>
<pub-id pub-id-type="pmid">14687395</pub-id>
</mixed-citation>
</ref>
<ref id="B11">
<mixed-citation publication-type="journal">
<name>
<surname>de Bruin</surname>
<given-names>ED</given-names>
</name>
<name>
<surname>Schmidt</surname>
<given-names>A</given-names>
</name>
<article-title>Walking behaviour of healthy elderly: attention should be paid</article-title>
<source>Behav Brain Funct</source>
<year>2010</year>
<volume>6</volume>
<fpage>59</fpage>
<pub-id pub-id-type="doi">10.1186/1744-9081-6-59</pub-id>
<pub-id pub-id-type="pmid">20939911</pub-id>
</mixed-citation>
</ref>
<ref id="B12">
<mixed-citation publication-type="journal">
<name>
<surname>Bryan</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Luszcz</surname>
<given-names>MA</given-names>
</name>
<article-title>Measurement of executive function: considerations for detecting adult age differences</article-title>
<source>J Clin Exp Neuropsychol</source>
<year>2000</year>
<volume>22</volume>
<issue>1</issue>
<fpage>40</fpage>
<lpage>55</lpage>
<pub-id pub-id-type="doi">10.1076/1380-3395(200002)22:1;1-8;FT040</pub-id>
<pub-id pub-id-type="pmid">10649544</pub-id>
</mixed-citation>
</ref>
<ref id="B13">
<mixed-citation publication-type="journal">
<name>
<surname>Shallice</surname>
<given-names>T</given-names>
</name>
<article-title>Specific impairments of planning</article-title>
<source>Philos Trans R Soc Lond B Biol Sci</source>
<year>1982</year>
<volume>298</volume>
<issue>1089</issue>
<fpage>199</fpage>
<lpage>209</lpage>
<pub-id pub-id-type="doi">10.1098/rstb.1982.0082</pub-id>
<pub-id pub-id-type="pmid">6125971</pub-id>
</mixed-citation>
</ref>
<ref id="B14">
<mixed-citation publication-type="journal">
<name>
<surname>Cicerone</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Levin</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Malec</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Stuss</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Whyte</surname>
<given-names>J</given-names>
</name>
<article-title>Cognitive rehabilitation interventions for executive function: moving from bench to bedside in patients with traumatic brain injury</article-title>
<source>J Cogn Neurosci</source>
<year>2006</year>
<volume>18</volume>
<issue>7</issue>
<fpage>1212</fpage>
<lpage>1222</lpage>
<pub-id pub-id-type="doi">10.1162/jocn.2006.18.7.1212</pub-id>
<pub-id pub-id-type="pmid">16839293</pub-id>
</mixed-citation>
</ref>
<ref id="B15">
<mixed-citation publication-type="journal">
<name>
<surname>Rosano</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Aizenstein</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Cochran</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Saxton</surname>
<given-names>J</given-names>
</name>
<name>
<surname>De Kosky</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Newman</surname>
<given-names>AB</given-names>
</name>
<name>
<surname>Kuller</surname>
<given-names>LH</given-names>
</name>
<name>
<surname>Lopez</surname>
<given-names>OL</given-names>
</name>
<name>
<surname>Carter</surname>
<given-names>CS</given-names>
</name>
<article-title>Functional neuroimaging indicators of successful executive control in the oldest old</article-title>
<source>Neuroimage</source>
<year>2005</year>
<volume>28</volume>
<issue>4</issue>
<fpage>881</fpage>
<lpage>889</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuroimage.2005.05.059</pub-id>
<pub-id pub-id-type="pmid">16226041</pub-id>
</mixed-citation>
</ref>
<ref id="B16">
<mixed-citation publication-type="journal">
<name>
<surname>Scherder</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Eggermont</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Visscher</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Scheltens</surname>
<given-names>P</given-names>
</name>
<name>
<surname>swaab</surname>
<given-names>D</given-names>
</name>
<article-title>Understanding higher level gait disturbances in mild dementia in order to improve rehabilitation: 'Last in-first out'</article-title>
<source>Neurosci Biobehav Rev</source>
<year>2011</year>
<volume>35</volume>
<issue>3</issue>
<fpage>699</fpage>
<lpage>714</lpage>
<pub-id pub-id-type="doi">10.1016/j.neubiorev.2010.08.009</pub-id>
<pub-id pub-id-type="pmid">20833200</pub-id>
</mixed-citation>
</ref>
<ref id="B17">
<mixed-citation publication-type="journal">
<name>
<surname>de Bruin</surname>
<given-names>ED</given-names>
</name>
<name>
<surname>Schoene</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Pichierri</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>ST</given-names>
</name>
<article-title>Use of virtual reality technique for the training of motor control in the elderly. Some theoretical considerations</article-title>
<source>Z Gerontol Geriatr</source>
<year>2010</year>
<volume>43</volume>
<issue>4</issue>
<fpage>229</fpage>
<lpage>234</lpage>
<pub-id pub-id-type="doi">10.1007/s00391-010-0124-7</pub-id>
<pub-id pub-id-type="pmid">20814798</pub-id>
</mixed-citation>
</ref>
<ref id="B18">
<mixed-citation publication-type="journal">
<name>
<surname>Harley</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Allen</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Braciszewski</surname>
<given-names>TL</given-names>
</name>
<name>
<surname>Cicerone</surname>
<given-names>KD</given-names>
</name>
<name>
<surname>Dahlberg</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Evans</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Foto</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Gordon</surname>
<given-names>WA</given-names>
</name>
<name>
<surname>Harrington</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Levin</surname>
<given-names>W</given-names>
</name>
<etal></etal>
<article-title>Guidelines for cognitive rehabilitation</article-title>
<source>NeuroRehabilitation</source>
<year>1992</year>
<volume>2</volume>
<fpage>62</fpage>
<lpage>67</lpage>
</mixed-citation>
</ref>
<ref id="B19">
<mixed-citation publication-type="journal">
<name>
<surname>Cicerone</surname>
<given-names>KD</given-names>
</name>
<name>
<surname>Dahlberg</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Malec</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Langenbahn</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Felicetti</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kneipp</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ellmo</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Kalmar</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Giacino</surname>
<given-names>JT</given-names>
</name>
<name>
<surname>Harley</surname>
<given-names>JP</given-names>
</name>
<etal></etal>
<article-title>Evidence-based cognitive rehabilitation: updated review of the literature from 1998 through 2002</article-title>
<source>Arch Phys Med Rehabil</source>
<year>2005</year>
<volume>86</volume>
<issue>8</issue>
<fpage>1681</fpage>
<lpage>1692</lpage>
<pub-id pub-id-type="doi">10.1016/j.apmr.2005.03.024</pub-id>
<pub-id pub-id-type="pmid">16084827</pub-id>
</mixed-citation>
</ref>
<ref id="B20">
<mixed-citation publication-type="journal">
<name>
<surname>Rohling</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Faust</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Beverly</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Demakis</surname>
<given-names>G</given-names>
</name>
<article-title>Effectiveness of cognitive rehabilitation following acquired brain injury: a meta-analytic re-examination of Cicerone et al.'s (2000, 2005) systematic reviews</article-title>
<source>Neuropsychology</source>
<year>2009</year>
<volume>23</volume>
<issue>1</issue>
<fpage>20</fpage>
<lpage>39</lpage>
<pub-id pub-id-type="pmid">19210030</pub-id>
</mixed-citation>
</ref>
<ref id="B21">
<mixed-citation publication-type="journal">
<name>
<surname>Acevedo</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Loewenstein</surname>
<given-names>DA</given-names>
</name>
<article-title>Nonpharmacological cognitive interventions in aging and dementia</article-title>
<source>J Geriatr Psychiatry Neurol</source>
<year>2007</year>
<volume>20</volume>
<issue>4</issue>
<fpage>239</fpage>
<lpage>249</lpage>
<pub-id pub-id-type="doi">10.1177/0891988707308808</pub-id>
<pub-id pub-id-type="pmid">18004010</pub-id>
</mixed-citation>
</ref>
<ref id="B22">
<mixed-citation publication-type="journal">
<name>
<surname>Jobe</surname>
<given-names>JB</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Ball</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Tennstedt</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Marsiske</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Willis</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Rebok</surname>
<given-names>GW</given-names>
</name>
<name>
<surname>Morris</surname>
<given-names>JN</given-names>
</name>
<name>
<surname>Helmers</surname>
<given-names>KF</given-names>
</name>
<name>
<surname>Leveck</surname>
<given-names>MD</given-names>
</name>
<etal></etal>
<article-title>ACTIVE: a cognitive intervention trial to promote independence in older adults</article-title>
<source>Control Clin Trials</source>
<year>2001</year>
<volume>22</volume>
<issue>4</issue>
<fpage>453</fpage>
<lpage>479</lpage>
<pub-id pub-id-type="doi">10.1016/S0197-2456(01)00139-8</pub-id>
<pub-id pub-id-type="pmid">11514044</pub-id>
</mixed-citation>
</ref>
<ref id="B23">
<mixed-citation publication-type="journal">
<name>
<surname>Faucounau</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>YH</given-names>
</name>
<name>
<surname>Boulay</surname>
<given-names>M</given-names>
</name>
<name>
<surname>De Rotrou</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Rigaud</surname>
<given-names>AS</given-names>
</name>
<article-title>Cognitive intervention programmes on patients affected by Mild Cognitive Impairment: a promising intervention tool for MCI?</article-title>
<source>J Nutr Health Aging</source>
<year>2010</year>
<volume>14</volume>
<issue>1</issue>
<fpage>31</fpage>
<lpage>35</lpage>
<pub-id pub-id-type="doi">10.1007/s12603-010-0006-0</pub-id>
<pub-id pub-id-type="pmid">20082051</pub-id>
</mixed-citation>
</ref>
<ref id="B24">
<mixed-citation publication-type="journal">
<name>
<surname>Thornton</surname>
<given-names>KE</given-names>
</name>
<name>
<surname>Carmody</surname>
<given-names>DP</given-names>
</name>
<article-title>Efficacy of traumatic brain injury rehabilitation: interventions of QEEG-guided biofeedback, computers, strategies, and medications</article-title>
<source>Appl Psychophysiol Biofeedback</source>
<year>2008</year>
<volume>33</volume>
<issue>2</issue>
<fpage>101</fpage>
<lpage>124</lpage>
<pub-id pub-id-type="doi">10.1007/s10484-008-9056-z</pub-id>
<pub-id pub-id-type="pmid">18551365</pub-id>
</mixed-citation>
</ref>
<ref id="B25">
<mixed-citation publication-type="journal">
<name>
<surname>McEwen</surname>
<given-names>SE</given-names>
</name>
<name>
<surname>Huijbregts</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Ryan</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Polatajko</surname>
<given-names>HJ</given-names>
</name>
<article-title>Cognitive strategy use to enhance motor skill acquisition post-stroke: a critical review</article-title>
<source>Brain Inj</source>
<year>2009</year>
<volume>23</volume>
<issue>4</issue>
<fpage>263</fpage>
<lpage>277</lpage>
<pub-id pub-id-type="doi">10.1080/02699050902788493</pub-id>
<pub-id pub-id-type="pmid">19277922</pub-id>
</mixed-citation>
</ref>
<ref id="B26">
<mixed-citation publication-type="journal">
<name>
<surname>Brown</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Shumway-Cook</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Woollacott</surname>
<given-names>MH</given-names>
</name>
<article-title>Attentional demands and postural recovery: the effects of aging</article-title>
<source>J Gerontol A Biol Sci Med Sci</source>
<year>1999</year>
<volume>54</volume>
<issue>4</issue>
<fpage>M165</fpage>
<lpage>171</lpage>
<pub-id pub-id-type="doi">10.1093/gerona/54.4.M165</pub-id>
<pub-id pub-id-type="pmid">10219006</pub-id>
</mixed-citation>
</ref>
<ref id="B27">
<mixed-citation publication-type="journal">
<name>
<surname>Maylor</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Allison</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Wing</surname>
<given-names>AM</given-names>
</name>
<article-title>Effects of spatial and nonspatial cognitive activity on postural stability</article-title>
<source>Br J Psychol</source>
<year>2001</year>
<volume>92 Part 2</volume>
<fpage>319</fpage>
<lpage>338</lpage>
<pub-id pub-id-type="pmid">11802876</pub-id>
</mixed-citation>
</ref>
<ref id="B28">
<mixed-citation publication-type="journal">
<name>
<surname>Haggard</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Cockburn</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Cock</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Fordham</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Wade</surname>
<given-names>D</given-names>
</name>
<article-title>Interference between gait and cognitive tasks in a rehabilitating neurological population</article-title>
<source>J Neurol Neurosurg Psychiatry</source>
<year>2000</year>
<volume>69</volume>
<issue>4</issue>
<fpage>479</fpage>
<lpage>486</lpage>
<pub-id pub-id-type="doi">10.1136/jnnp.69.4.479</pub-id>
<pub-id pub-id-type="pmid">10990508</pub-id>
</mixed-citation>
</ref>
<ref id="B29">
<mixed-citation publication-type="journal">
<name>
<surname>McCulloch</surname>
<given-names>K</given-names>
</name>
<article-title>Attention and dual-task conditions: physical therapy implications for individuals with acquired brain injury</article-title>
<source>J Neurol Phys Ther</source>
<year>2007</year>
<volume>31</volume>
<issue>3</issue>
<fpage>104</fpage>
<lpage>118</lpage>
<pub-id pub-id-type="pmid">18025956</pub-id>
</mixed-citation>
</ref>
<ref id="B30">
<mixed-citation publication-type="journal">
<name>
<surname>Camicioli</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Howieson</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Lehman</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kaye</surname>
<given-names>J</given-names>
</name>
<article-title>Talking while walking: the effect of a dual task in aging and Alzheimer's disease</article-title>
<source>Neurology</source>
<year>1997</year>
<volume>48</volume>
<issue>4</issue>
<fpage>955</fpage>
<lpage>958</lpage>
<pub-id pub-id-type="pmid">9109884</pub-id>
</mixed-citation>
</ref>
<ref id="B31">
<mixed-citation publication-type="journal">
<name>
<surname>Pellecchia</surname>
<given-names>GL</given-names>
</name>
<article-title>Dual-task training reduces impact of cognitive task on postural sway</article-title>
<source>J Mot Behav</source>
<year>2005</year>
<volume>37</volume>
<issue>3</issue>
<fpage>239</fpage>
<lpage>246</lpage>
<pub-id pub-id-type="doi">10.3200/JMBR.37.3.239-246</pub-id>
<pub-id pub-id-type="pmid">15883121</pub-id>
</mixed-citation>
</ref>
<ref id="B32">
<mixed-citation publication-type="journal">
<name>
<surname>Bisson</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Contant</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Sveistrup</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Lajoie</surname>
<given-names>Y</given-names>
</name>
<article-title>Functional balance and dual-task reaction times in older adults are improved by virtual reality and biofeedback training</article-title>
<source>Cyberpsychol Behav</source>
<year>2007</year>
<volume>10</volume>
<issue>1</issue>
<fpage>16</fpage>
<lpage>23</lpage>
<pub-id pub-id-type="doi">10.1089/cpb.2006.9997</pub-id>
<pub-id pub-id-type="pmid">17305444</pub-id>
</mixed-citation>
</ref>
<ref id="B33">
<mixed-citation publication-type="journal">
<name>
<surname>Sveistrup</surname>
<given-names>H</given-names>
</name>
<article-title>Motor rehabilitation using virtual reality</article-title>
<source>J Neuroeng Rehabil</source>
<year>2004</year>
<volume>1</volume>
<issue>1</issue>
<fpage>10</fpage>
<pub-id pub-id-type="doi">10.1186/1743-0003-1-10</pub-id>
<pub-id pub-id-type="pmid">15679945</pub-id>
</mixed-citation>
</ref>
<ref id="B34">
<mixed-citation publication-type="journal">
<name>
<surname>Zelinski</surname>
<given-names>EM</given-names>
</name>
<name>
<surname>Reyes</surname>
<given-names>R</given-names>
</name>
<article-title>Cognitive benefits of computer games for older adults</article-title>
<source>Gerontechnology</source>
<year>2009</year>
<volume>8</volume>
<issue>1</issue>
<fpage>220</fpage>
<lpage>235</lpage>
</mixed-citation>
</ref>
<ref id="B35">
<mixed-citation publication-type="journal">
<name>
<surname>Bashore</surname>
<given-names>TR</given-names>
</name>
<name>
<surname>Ridderinkhof</surname>
<given-names>KR</given-names>
</name>
<article-title>Older age, traumatic brain injury, and cognitive slowing: some convergent and divergent findings</article-title>
<source>Psychol Bull</source>
<year>2002</year>
<volume>128</volume>
<issue>1</issue>
<fpage>151</fpage>
<lpage>198</lpage>
<pub-id pub-id-type="pmid">11843546</pub-id>
</mixed-citation>
</ref>
<ref id="B36">
<mixed-citation publication-type="journal">
<name>
<surname>Hinkebein</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>TA</given-names>
</name>
<name>
<surname>Callahan</surname>
<given-names>CD</given-names>
</name>
<name>
<surname>Johnstone</surname>
<given-names>B</given-names>
</name>
<article-title>Traumatic brain injury and Alzheimer's: deficit profile similarities and the impact of normal ageing</article-title>
<source>Brain Inj</source>
<year>2003</year>
<volume>17</volume>
<issue>12</issue>
<fpage>1035</fpage>
<lpage>1042</lpage>
<pub-id pub-id-type="doi">10.1080/0269905031000110490</pub-id>
<pub-id pub-id-type="pmid">14555363</pub-id>
</mixed-citation>
</ref>
<ref id="B37">
<mixed-citation publication-type="journal">
<name>
<surname>Goldstein</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Shelly</surname>
<given-names>CH</given-names>
</name>
<article-title>Similarities and differences between psychological deficit in aging and brain damage</article-title>
<source>J Gerontol</source>
<year>1975</year>
<volume>30</volume>
<issue>4</issue>
<fpage>448</fpage>
<lpage>455</lpage>
<pub-id pub-id-type="pmid">1141675</pub-id>
</mixed-citation>
</ref>
<ref id="B38">
<mixed-citation publication-type="journal">
<name>
<surname>McDowd</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Filion</surname>
<given-names>DL</given-names>
</name>
<name>
<surname>Pohl</surname>
<given-names>PS</given-names>
</name>
<name>
<surname>Richards</surname>
<given-names>LG</given-names>
</name>
<name>
<surname>Stiers</surname>
<given-names>W</given-names>
</name>
<article-title>Attentional abilities and functional outcomes following stroke</article-title>
<source>J Gerontol B Psychol Sci Soc Sci</source>
<year>2003</year>
<volume>58</volume>
<issue>1</issue>
<fpage>P45</fpage>
<lpage>53</lpage>
<pub-id pub-id-type="pmid">12496301</pub-id>
</mixed-citation>
</ref>
<ref id="B39">
<mixed-citation publication-type="journal">
<name>
<surname>Broglio</surname>
<given-names>SP</given-names>
</name>
<name>
<surname>Tomporowski</surname>
<given-names>PD</given-names>
</name>
<name>
<surname>Ferrara</surname>
<given-names>MS</given-names>
</name>
<article-title>Balance performance with a cognitive task: a dual-task testing paradigm</article-title>
<source>Med Sci Sports Exerc</source>
<year>2005</year>
<volume>37</volume>
<issue>4</issue>
<fpage>689</fpage>
<lpage>695</lpage>
<pub-id pub-id-type="doi">10.1249/01.MSS.0000159019.14919.09</pub-id>
<pub-id pub-id-type="pmid">15809571</pub-id>
</mixed-citation>
</ref>
<ref id="B40">
<mixed-citation publication-type="journal">
<name>
<surname>Parker</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Osternig</surname>
<given-names>LR</given-names>
</name>
<name>
<surname>van Donkelaar</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Chou</surname>
<given-names>LS</given-names>
</name>
<article-title>Recovery of cognitive and dynamic motor function following concussion</article-title>
<source>Br J Sports Med</source>
<year>2007</year>
<volume>41</volume>
<issue>12</issue>
<fpage>868</fpage>
<lpage>873</lpage>
<comment>discussion 873.</comment>
<pub-id pub-id-type="doi">10.1136/bjsm.2006.033761</pub-id>
<pub-id pub-id-type="pmid">17517857</pub-id>
</mixed-citation>
</ref>
<ref id="B41">
<mixed-citation publication-type="journal">
<name>
<surname>Downs</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>Black</surname>
<given-names>N</given-names>
</name>
<article-title>The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions</article-title>
<source>J Epidemiol Community Health</source>
<year>1998</year>
<volume>52</volume>
<issue>6</issue>
<fpage>377</fpage>
<lpage>384</lpage>
<pub-id pub-id-type="doi">10.1136/jech.52.6.377</pub-id>
<pub-id pub-id-type="pmid">9764259</pub-id>
</mixed-citation>
</ref>
<ref id="B42">
<mixed-citation publication-type="journal">
<name>
<surname>Landis</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Koch</surname>
<given-names>GG</given-names>
</name>
<article-title>An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers</article-title>
<source>Biometrics</source>
<year>1977</year>
<volume>33</volume>
<issue>2</issue>
<fpage>363</fpage>
<lpage>374</lpage>
<pub-id pub-id-type="doi">10.2307/2529786</pub-id>
<pub-id pub-id-type="pmid">884196</pub-id>
</mixed-citation>
</ref>
<ref id="B43">
<mixed-citation publication-type="journal">
<name>
<surname>Liberati</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Altman</surname>
<given-names>DG</given-names>
</name>
<name>
<surname>Tetzlaff</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Mulrow</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Gotzsche</surname>
<given-names>PC</given-names>
</name>
<name>
<surname>Ioannidis</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Clarke</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Devereaux</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Kleijnen</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Moher</surname>
<given-names>D</given-names>
</name>
<article-title>The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration</article-title>
<source>J Clin Epidemiol</source>
<year>2009</year>
<volume>62</volume>
<issue>10</issue>
<fpage>e1</fpage>
<lpage>34</lpage>
<pub-id pub-id-type="doi">10.1016/j.jclinepi.2009.06.006</pub-id>
<pub-id pub-id-type="pmid">19631507</pub-id>
</mixed-citation>
</ref>
<ref id="B44">
<mixed-citation publication-type="journal">
<name>
<surname>Batson</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Feltman</surname>
<given-names>R</given-names>
</name>
<name>
<surname>McBride</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Waring</surname>
<given-names>J</given-names>
</name>
<article-title>Effect of mental practice combined with physical practice on balance in the community-dwelling elderly</article-title>
<source>Activities, Adaptation & Aging</source>
<year>2007</year>
<volume>31</volume>
<issue>2</issue>
<fpage>1</fpage>
<lpage>18</lpage>
<pub-id pub-id-type="doi">10.1300/J016v31n02_01</pub-id>
<pub-id pub-id-type="pmid">21659766</pub-id>
</mixed-citation>
</ref>
<ref id="B45">
<mixed-citation publication-type="journal">
<name>
<surname>Broeren</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Claesson</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Goude</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Rydmark</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sunnerhagen</surname>
<given-names>KS</given-names>
</name>
<article-title>Virtual rehabilitation in an activity centre for community-dwelling persons with stroke. The possibilities of 3-dimensional computer games</article-title>
<source>Cerebrovasc Dis</source>
<year>2008</year>
<volume>26</volume>
<issue>3</issue>
<fpage>289</fpage>
<lpage>296</lpage>
<pub-id pub-id-type="doi">10.1159/000149576</pub-id>
<pub-id pub-id-type="pmid">18667809</pub-id>
</mixed-citation>
</ref>
<ref id="B46">
<mixed-citation publication-type="journal">
<name>
<surname>Buccello-Stout</surname>
<given-names>RR</given-names>
</name>
<name>
<surname>Bloomberg</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Cohen</surname>
<given-names>HS</given-names>
</name>
<name>
<surname>Whorton</surname>
<given-names>EB</given-names>
</name>
<name>
<surname>Weaver</surname>
<given-names>GD</given-names>
</name>
<name>
<surname>Cromwell</surname>
<given-names>RL</given-names>
</name>
<article-title>Effects of sensorimotor adaptation training on functional mobility in older adults</article-title>
<source>Journals of Gerontology Series B: Psychological Sciences & Social Sciences</source>
<year>2008</year>
<volume>63B</volume>
<issue>5</issue>
<fpage>P295</fpage>
<lpage>300</lpage>
</mixed-citation>
</ref>
<ref id="B47">
<mixed-citation publication-type="journal">
<name>
<surname>Clark</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Kraemer</surname>
<given-names>T</given-names>
</name>
<article-title>Clinical use of Nintendo Wii bowling simulation to decrease fall risk in an elderly resident of a nursing home: a case report</article-title>
<source>J Geriatr Phys Ther</source>
<year>2009</year>
<volume>32</volume>
<issue>4</issue>
<fpage>174</fpage>
<lpage>180</lpage>
<pub-id pub-id-type="doi">10.1519/00139143-200932040-00006</pub-id>
<pub-id pub-id-type="pmid">20469567</pub-id>
</mixed-citation>
</ref>
<ref id="B48">
<mixed-citation publication-type="journal">
<name>
<surname>de Bruin</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Dörflinger</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Reith</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Murer</surname>
<given-names>K</given-names>
</name>
<article-title>The effect of dance dance revolution gaming compared to conventional physical training on dual task walking costs in elderly</article-title>
<source>Parkinsonism and Related Disorders</source>
<year>2010</year>
<volume>16</volume>
<fpage>S59</fpage>
</mixed-citation>
</ref>
<ref id="B49">
<mixed-citation publication-type="other">
<name>
<surname>Deutsch</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Robbins</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Morrison</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Guarrera Bowlby</surname>
<given-names>P</given-names>
</name>
<article-title>Wii-Based Compared to Standard of Care Balance and Mobility Rehabilitation for Two Individuals Post-Stroke</article-title>
<year>2009</year>
<fpage>117</fpage>
<lpage>120</lpage>
</mixed-citation>
</ref>
<ref id="B50">
<mixed-citation publication-type="journal">
<name>
<surname>Dunsky</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Dickstein</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Marcovitz</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Levy</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Deutsch</surname>
<given-names>J</given-names>
</name>
<article-title>Home-based motor imagery training for gait rehabilitation of people with chronic poststroke hemiparesis</article-title>
<source>Archives of Physical Medicine and Rehabilitation</source>
<year>2008</year>
<volume>89</volume>
<issue>8</issue>
<fpage>1580</fpage>
<lpage>1588</lpage>
<pub-id pub-id-type="doi">10.1016/j.apmr.2007.12.039</pub-id>
<pub-id pub-id-type="pmid">18674992</pub-id>
</mixed-citation>
</ref>
<ref id="B51">
<mixed-citation publication-type="journal">
<name>
<surname>Hamel</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Lajoie</surname>
<given-names>Y</given-names>
</name>
<article-title>Mental imagery. Effects on static balance and attentional demands of the elderly</article-title>
<source>Aging - Clinical and Experimental Research</source>
<year>2005</year>
<volume>17</volume>
<issue>3</issue>
<fpage>223</fpage>
<lpage>228</lpage>
<pub-id pub-id-type="pmid">16110736</pub-id>
</mixed-citation>
</ref>
<ref id="B52">
<mixed-citation publication-type="journal">
<name>
<surname>Hatzitaki</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Amiridis</surname>
<given-names>IG</given-names>
</name>
<name>
<surname>Nikodelis</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Spiliopoulou</surname>
<given-names>S</given-names>
</name>
<article-title>Direction-induced effects of visually guided weight-shifting training on standing balance in the elderly</article-title>
<source>Gerontology</source>
<year>2009</year>
<volume>55</volume>
<issue>2</issue>
<fpage>145</fpage>
<lpage>152</lpage>
<pub-id pub-id-type="doi">10.1159/000142386</pub-id>
<pub-id pub-id-type="pmid">18594127</pub-id>
</mixed-citation>
</ref>
<ref id="B53">
<mixed-citation publication-type="journal">
<name>
<surname>Hinman</surname>
<given-names>MR</given-names>
</name>
<article-title>Comparison of two short-term balance training programs for community-dwelling older adults</article-title>
<source>J Geriatr Phys Ther</source>
<year>2002</year>
<volume>25</volume>
<issue>3</issue>
<fpage>10</fpage>
<pub-id pub-id-type="doi">10.1519/00139143-200225030-00003</pub-id>
</mixed-citation>
</ref>
<ref id="B54">
<mixed-citation publication-type="journal">
<name>
<surname>Jang</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>You</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>Hallett</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Cho</surname>
<given-names>YW</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Cho</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>T</given-names>
</name>
<article-title>Cortical reorganization and associated functional motor recovery after virtual reality in patients with chronic stroke: an experimenter-blind preliminary study</article-title>
<source>Arch Phys Med Rehabil</source>
<year>2005</year>
<volume>86</volume>
<issue>11</issue>
<fpage>2218</fpage>
<lpage>2223</lpage>
<pub-id pub-id-type="doi">10.1016/j.apmr.2005.04.015</pub-id>
<pub-id pub-id-type="pmid">16271575</pub-id>
</mixed-citation>
</ref>
<ref id="B55">
<mixed-citation publication-type="journal">
<name>
<surname>Lajoie</surname>
<given-names>Y</given-names>
</name>
<article-title>Effect of computerized feedback postural training on posture and attentional demands in older adults</article-title>
<source>Aging Clin Exp Res</source>
<year>2004</year>
<volume>16</volume>
<issue>5</issue>
<fpage>363</fpage>
<lpage>368</lpage>
<pub-id pub-id-type="pmid">15636461</pub-id>
</mixed-citation>
</ref>
<ref id="B56">
<mixed-citation publication-type="journal">
<name>
<surname>Mumford</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Duckworth</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>PR</given-names>
</name>
<name>
<surname>Shum</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>PH</given-names>
</name>
<article-title>Upper limb virtual rehabilitation for traumatic brain injury: initial evaluation of the elements system</article-title>
<source>Brain Inj</source>
<year>2010</year>
<volume>24</volume>
<issue>5</issue>
<fpage>780</fpage>
<lpage>791</lpage>
<pub-id pub-id-type="doi">10.3109/02699051003652807</pub-id>
<pub-id pub-id-type="pmid">20353283</pub-id>
</mixed-citation>
</ref>
<ref id="B57">
<mixed-citation publication-type="journal">
<name>
<surname>Sackley</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Lincoln</surname>
<given-names>NB</given-names>
</name>
<article-title>Single blind randomized controlled trial of visual feedback after stroke: effects on stance symmetry and function</article-title>
<source>Disabil Rehabil</source>
<year>1997</year>
<volume>19</volume>
<issue>12</issue>
<fpage>536</fpage>
<lpage>546</lpage>
<pub-id pub-id-type="doi">10.3109/09638289709166047</pub-id>
<pub-id pub-id-type="pmid">9442992</pub-id>
</mixed-citation>
</ref>
<ref id="B58">
<mixed-citation publication-type="journal">
<name>
<surname>Shigematsu</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Okura</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Nakagaichi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Tanaka</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Sakai</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kitazumi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Rantanen</surname>
<given-names>T</given-names>
</name>
<article-title>Square-stepping exercise and fall risk factors in older adults: a single-blind, randomized controlled trial</article-title>
<source>J Gerontol A Biol Sci Med Sci</source>
<year>2008</year>
<volume>63</volume>
<issue>1</issue>
<fpage>76</fpage>
<lpage>82</lpage>
<pub-id pub-id-type="pmid">18245764</pub-id>
</mixed-citation>
</ref>
<ref id="B59">
<mixed-citation publication-type="journal">
<name>
<surname>Shigematsu</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Okura</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Sakai</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Rantanen</surname>
<given-names>T</given-names>
</name>
<article-title>Square-stepping exercise versus strength and balance training for fall risk factors</article-title>
<source>Aging Clin Exp Res</source>
<year>2008</year>
<volume>20</volume>
<issue>1</issue>
<fpage>19</fpage>
<lpage>24</lpage>
<pub-id pub-id-type="pmid">18283224</pub-id>
</mixed-citation>
</ref>
<ref id="B60">
<mixed-citation publication-type="journal">
<name>
<surname>Silsupadol</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Lugade</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Shumway-Cook</surname>
<given-names>A</given-names>
</name>
<name>
<surname>van Donkelaar</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Chou</surname>
<given-names>LS</given-names>
</name>
<name>
<surname>Mayr</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Woollacott</surname>
<given-names>MH</given-names>
</name>
<article-title>Training-related changes in dual-task walking performance of elderly persons with balance impairment: a double-blind, randomized controlled trial</article-title>
<source>Gait Posture</source>
<year>2009</year>
<volume>29</volume>
<issue>4</issue>
<fpage>634</fpage>
<lpage>639</lpage>
<pub-id pub-id-type="doi">10.1016/j.gaitpost.2009.01.006</pub-id>
<pub-id pub-id-type="pmid">19201610</pub-id>
</mixed-citation>
</ref>
<ref id="B61">
<mixed-citation publication-type="journal">
<name>
<surname>Silsupadol</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Shumway-Cook</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Lugade</surname>
<given-names>V</given-names>
</name>
<name>
<surname>van Donkelaar</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Chou</surname>
<given-names>LS</given-names>
</name>
<name>
<surname>Mayr</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Woollacott</surname>
<given-names>MH</given-names>
</name>
<article-title>Effects of single-task versus dual-task training on balance performance in older adults: a double-blind, randomized controlled trial</article-title>
<source>Arch Phys Med Rehabil</source>
<year>2009</year>
<volume>90</volume>
<issue>3</issue>
<fpage>381</fpage>
<lpage>387</lpage>
<pub-id pub-id-type="doi">10.1016/j.apmr.2008.09.559</pub-id>
<pub-id pub-id-type="pmid">19254600</pub-id>
</mixed-citation>
</ref>
<ref id="B62">
<mixed-citation publication-type="journal">
<name>
<surname>Silsupadol</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Siu</surname>
<given-names>KC</given-names>
</name>
<name>
<surname>Shumway-Cook</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Woollacott</surname>
<given-names>MH</given-names>
</name>
<article-title>Training of balance under single- and dual-task conditions in older adults with balance impairment</article-title>
<source>Phys Ther</source>
<year>2006</year>
<volume>86</volume>
<issue>2</issue>
<fpage>269</fpage>
<lpage>281</lpage>
<pub-id pub-id-type="pmid">16445340</pub-id>
</mixed-citation>
</ref>
<ref id="B63">
<mixed-citation publication-type="journal">
<name>
<surname>Srivastava</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Taly</surname>
<given-names>AB</given-names>
</name>
<name>
<surname>Gupta</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Murali</surname>
<given-names>T</given-names>
</name>
<article-title>Post-stroke balance training: Role of force platform with visual feedback technique</article-title>
<source>J Neurol Sci</source>
<year>2009</year>
<volume>287</volume>
<issue>1-2</issue>
<fpage>89</fpage>
<lpage>93</lpage>
<pub-id pub-id-type="doi">10.1016/j.jns.2009.08.051</pub-id>
<pub-id pub-id-type="pmid">19733860</pub-id>
</mixed-citation>
</ref>
<ref id="B64">
<mixed-citation publication-type="other">
<name>
<surname>Sugarman</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Weisel-Eichler</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Burstin</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>R</given-names>
</name>
<article-title>Use of the Wii Fit system for the treatment of balance problems in the elderly: A feasibility study</article-title>
<year>2009</year>
<fpage>111</fpage>
<lpage>116</lpage>
</mixed-citation>
</ref>
<ref id="B65">
<mixed-citation publication-type="journal">
<name>
<surname>Talassi</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Guerreschi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Feriani</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Fedi</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Bianchetti</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Trabucchi</surname>
<given-names>M</given-names>
</name>
<article-title>Effectiveness of a cognitive rehabilitation program in mild dementia (MD) and mild cognitive impairment (MCI): a case control study</article-title>
<source>Arch Gerontol Geriatr</source>
<year>2007</year>
<volume>44</volume>
<issue>Suppl 1</issue>
<fpage>391</fpage>
<lpage>399</lpage>
<pub-id pub-id-type="pmid">17317481</pub-id>
</mixed-citation>
</ref>
<ref id="B66">
<mixed-citation publication-type="journal">
<name>
<surname>Vaillant</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Vuillerme</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Martigne</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Caillat-Miousse</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Parisot</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Nougier</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Juvin</surname>
<given-names>R</given-names>
</name>
<article-title>Balance, aging, and osteoporosis: effects of cognitive exercises combined with physiotherapy</article-title>
<source>Joint Bone Spine</source>
<year>2006</year>
<volume>73</volume>
<issue>4</issue>
<fpage>414</fpage>
<lpage>418</lpage>
<pub-id pub-id-type="doi">10.1016/j.jbspin.2005.07.003</pub-id>
<pub-id pub-id-type="pmid">16488641</pub-id>
</mixed-citation>
</ref>
<ref id="B67">
<mixed-citation publication-type="journal">
<name>
<surname>Wolf</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Barnhart</surname>
<given-names>HX</given-names>
</name>
<name>
<surname>Ellison</surname>
<given-names>GL</given-names>
</name>
<name>
<surname>Coogler</surname>
<given-names>CE</given-names>
</name>
<article-title>The effect of Tai Chi Quan and computerized balance training on postural stability in older subjects. Atlanta FICSIT Group. Frailty and Injuries: Cooperative Studies on Intervention Techniques</article-title>
<source>Phys Ther</source>
<year>1997</year>
<volume>77</volume>
<issue>4</issue>
<fpage>371</fpage>
<lpage>381</lpage>
<comment>discussion 382-374.</comment>
<pub-id pub-id-type="pmid">9105340</pub-id>
</mixed-citation>
</ref>
<ref id="B68">
<mixed-citation publication-type="journal">
<name>
<surname>Yang</surname>
<given-names>YR</given-names>
</name>
<name>
<surname>Tsai</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Chuang</surname>
<given-names>TY</given-names>
</name>
<name>
<surname>Sung</surname>
<given-names>WH</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>RY</given-names>
</name>
<article-title>Virtual reality-based training improves community ambulation in individuals with stroke: a randomized controlled trial</article-title>
<source>Gait Posture</source>
<year>2008</year>
<volume>28</volume>
<issue>2</issue>
<fpage>201</fpage>
<lpage>206</lpage>
<pub-id pub-id-type="doi">10.1016/j.gaitpost.2007.11.007</pub-id>
<pub-id pub-id-type="pmid">18358724</pub-id>
</mixed-citation>
</ref>
<ref id="B69">
<mixed-citation publication-type="journal">
<name>
<surname>Yong Joo</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Soon Yin</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Thia</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Pei Fen</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Kuah</surname>
<given-names>CWK</given-names>
</name>
<name>
<surname>Kong</surname>
<given-names>KH</given-names>
</name>
<article-title>A feasibility study using interactive commercial off-the-shelf computer gaming in upper limb rehabilitation in patients after stroke</article-title>
<source>J Rehabil Med</source>
<year>2010</year>
<volume>42</volume>
<issue>5</issue>
<fpage>437</fpage>
<lpage>441</lpage>
<pub-id pub-id-type="doi">10.2340/16501977-0528</pub-id>
<pub-id pub-id-type="pmid">20544153</pub-id>
</mixed-citation>
</ref>
<ref id="B70">
<mixed-citation publication-type="journal">
<name>
<surname>You</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Shetty</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Shields</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Belay</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>D</given-names>
</name>
<article-title>Effects of dual-task cognitive-gait intervention on memory and gait dynamics in older adults with a history of falls: a preliminary investigation</article-title>
<source>NeuroRehabilitation</source>
<year>2009</year>
<volume>24</volume>
<issue>2</issue>
<fpage>193</fpage>
<lpage>198</lpage>
<pub-id pub-id-type="pmid">19339758</pub-id>
</mixed-citation>
</ref>
<ref id="B71">
<mixed-citation publication-type="journal">
<name>
<surname>Kerdoncuff</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Durufle</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Petrilli</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Nicolas</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Robineau</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Lassalle</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Le Tallec</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Ramanantsitonta</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Gallien</surname>
<given-names>P</given-names>
</name>
<article-title>[Interest of visual biofeedback training in rehabilitation of balance after stroke]</article-title>
<source>Ann Readapt Med Phys</source>
<year>2004</year>
<volume>47</volume>
<issue>4</issue>
<fpage>169</fpage>
<lpage>176</lpage>
<comment>discussion 177-168.</comment>
<pub-id pub-id-type="pmid">15130715</pub-id>
</mixed-citation>
</ref>
<ref id="B72">
<mixed-citation publication-type="book">
<name>
<surname>Tonetta</surname>
<given-names>M</given-names>
</name>
<source>Il TNP, un software che opera in ambiente Windows</source>
<year>1995</year>
<publisher-name>Atti del 4 Convegno Nazionale Informatica, Didattica e Disabilità Napoli, (in Italian)</publisher-name>
</mixed-citation>
</ref>
<ref id="B73">
<mixed-citation publication-type="book">
<name>
<surname>Tonetta</surname>
<given-names>M</given-names>
</name>
<source>Riabilitazione neuropsicologica e TNP (training neuropsicologico). Aspetti teorici e pragmatici</source>
<year>1998</year>
<publisher-name>New Magazine Publisher, Trento (in Italian)</publisher-name>
</mixed-citation>
</ref>
<ref id="B74">
<mixed-citation publication-type="journal">
<name>
<surname>Reuben</surname>
<given-names>DB</given-names>
</name>
<name>
<surname>Siu</surname>
<given-names>AL</given-names>
</name>
<article-title>An objective measure of physical function of elderly outpatients. The Physical Performance Test</article-title>
<source>J Am Geriatr Soc</source>
<year>1990</year>
<volume>38</volume>
<issue>10</issue>
<fpage>1105</fpage>
<lpage>1112</lpage>
<pub-id pub-id-type="pmid">2229864</pub-id>
</mixed-citation>
</ref>
<ref id="B75">
<mixed-citation publication-type="journal">
<name>
<surname>Mulder</surname>
<given-names>T</given-names>
</name>
<article-title>Motor imagery and action observation: cognitive tools for rehabilitation</article-title>
<source>J Neural Transm</source>
<year>2007</year>
<volume>114</volume>
<issue>10</issue>
<fpage>1265</fpage>
<lpage>1278</lpage>
<pub-id pub-id-type="doi">10.1007/s00702-007-0763-z</pub-id>
<pub-id pub-id-type="pmid">17579805</pub-id>
</mixed-citation>
</ref>
<ref id="B76">
<mixed-citation publication-type="journal">
<name>
<surname>Ehrsson</surname>
<given-names>HH</given-names>
</name>
<name>
<surname>Geyer</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Naito</surname>
<given-names>E</given-names>
</name>
<article-title>Imagery of voluntary movement of fingers, toes, and tongue activates corresponding body-part-specific motor representations</article-title>
<source>J Neurophysiol</source>
<year>2003</year>
<volume>90</volume>
<issue>5</issue>
<fpage>3304</fpage>
<lpage>3316</lpage>
<pub-id pub-id-type="doi">10.1152/jn.01113.2002</pub-id>
<pub-id pub-id-type="pmid">14615433</pub-id>
</mixed-citation>
</ref>
<ref id="B77">
<mixed-citation publication-type="journal">
<name>
<surname>Mulder</surname>
<given-names>T</given-names>
</name>
<name>
<surname>de Vries</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Zijlstra</surname>
<given-names>S</given-names>
</name>
<article-title>Observation, imagination and execution of an effortful movement: more evidence for a central explanation of motor imagery</article-title>
<source>Exp Brain Res</source>
<year>2005</year>
<volume>163</volume>
<issue>3</issue>
<fpage>344</fpage>
<lpage>351</lpage>
<pub-id pub-id-type="doi">10.1007/s00221-004-2179-4</pub-id>
<pub-id pub-id-type="pmid">15654585</pub-id>
</mixed-citation>
</ref>
<ref id="B78">
<mixed-citation publication-type="journal">
<name>
<surname>Hardy</surname>
<given-names>SE</given-names>
</name>
<name>
<surname>Perera</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Roumani</surname>
<given-names>YF</given-names>
</name>
<name>
<surname>Chandler</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Studenski</surname>
<given-names>SA</given-names>
</name>
<article-title>Improvement in usual gait speed predicts better survival in older adults</article-title>
<source>J Am Geriatr Soc</source>
<year>2007</year>
<volume>55</volume>
<issue>11</issue>
<fpage>1727</fpage>
<lpage>1734</lpage>
<pub-id pub-id-type="doi">10.1111/j.1532-5415.2007.01413.x</pub-id>
<pub-id pub-id-type="pmid">17916121</pub-id>
</mixed-citation>
</ref>
<ref id="B79">
<mixed-citation publication-type="journal">
<name>
<surname>Perrin</surname>
<given-names>PP</given-names>
</name>
<name>
<surname>Jeandel</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Perrin</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Bene</surname>
<given-names>MC</given-names>
</name>
<article-title>Influence of visual control, conduction, and central integration on static and dynamic balance in healthy older adults</article-title>
<source>Gerontology</source>
<year>1997</year>
<volume>43</volume>
<issue>4</issue>
<fpage>223</fpage>
<lpage>231</lpage>
<pub-id pub-id-type="doi">10.1159/000213854</pub-id>
<pub-id pub-id-type="pmid">9222751</pub-id>
</mixed-citation>
</ref>
<ref id="B80">
<mixed-citation publication-type="journal">
<name>
<surname>Cross</surname>
<given-names>ES</given-names>
</name>
<name>
<surname>Kraemer</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Hamilton</surname>
<given-names>AF</given-names>
</name>
<name>
<surname>Kelley</surname>
<given-names>WM</given-names>
</name>
<name>
<surname>Grafton</surname>
<given-names>ST</given-names>
</name>
<article-title>Sensitivity of the action observation network to physical and observational learning</article-title>
<source>Cereb Cortex</source>
<year>2009</year>
<volume>19</volume>
<issue>2</issue>
<fpage>315</fpage>
<lpage>326</lpage>
<pub-id pub-id-type="pmid">18515297</pub-id>
</mixed-citation>
</ref>
<ref id="B81">
<mixed-citation publication-type="journal">
<name>
<surname>You</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>Jang</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>YH</given-names>
</name>
<name>
<surname>Hallett</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ahn</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>Kwon</surname>
<given-names>YH</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>MY</given-names>
</name>
<article-title>Virtual reality-induced cortical reorganization and associated locomotor recovery in chronic stroke: an experimenter-blind randomized study</article-title>
<source>Stroke</source>
<year>2005</year>
<volume>36</volume>
<issue>6</issue>
<fpage>1166</fpage>
<lpage>1171</lpage>
<pub-id pub-id-type="doi">10.1161/01.STR.0000162715.43417.91</pub-id>
<pub-id pub-id-type="pmid">15890990</pub-id>
</mixed-citation>
</ref>
<ref id="B82">
<mixed-citation publication-type="journal">
<name>
<surname>Holden</surname>
<given-names>MK</given-names>
</name>
<article-title>Virtual environments for motor rehabilitation: review</article-title>
<source>Cyberpsychol Behav</source>
<year>2005</year>
<volume>8</volume>
<issue>3</issue>
<fpage>187</fpage>
<lpage>211</lpage>
<comment>discussion 212-189.</comment>
<pub-id pub-id-type="doi">10.1089/cpb.2005.8.187</pub-id>
<pub-id pub-id-type="pmid">15971970</pub-id>
</mixed-citation>
</ref>
<ref id="B83">
<mixed-citation publication-type="journal">
<name>
<surname>Kizony</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Raz</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Katz</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Weingarden</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Weiss</surname>
<given-names>PL</given-names>
</name>
<article-title>Video-capture virtual reality system for patients with paraplegic spinal cord injury</article-title>
<source>J Rehabil Res Dev</source>
<year>2005</year>
<volume>42</volume>
<issue>5</issue>
<fpage>595</fpage>
<lpage>608</lpage>
<pub-id pub-id-type="doi">10.1682/JRRD.2005.01.0023</pub-id>
<pub-id pub-id-type="pmid">16586185</pub-id>
</mixed-citation>
</ref>
<ref id="B84">
<mixed-citation publication-type="book">
<name>
<surname>Holden</surname>
<given-names>MK</given-names>
</name>
<name>
<surname>Todorov</surname>
<given-names>E</given-names>
</name>
<person-group person-group-type="editor">Stanney KM. Mahwah, NJ</person-group>
<article-title>Use of virtual environments in motor learning and rehabilitation</article-title>
<source>Handbook of virtual environments design implementation and applications</source>
<year>2002</year>
<publisher-name>Lawrence Erlbaum Associates</publisher-name>
<fpage>999</fpage>
<lpage>1026</lpage>
</mixed-citation>
</ref>
<ref id="B85">
<mixed-citation publication-type="journal">
<name>
<surname>Sanchez-Vives</surname>
<given-names>MV</given-names>
</name>
<name>
<surname>Slater</surname>
<given-names>M</given-names>
</name>
<article-title>From presence to consciousness through virtual reality</article-title>
<source>Nat Rev Neurosci</source>
<year>2005</year>
<volume>6</volume>
<issue>4</issue>
<fpage>332</fpage>
<lpage>339</lpage>
<pub-id pub-id-type="doi">10.1038/nrn1651</pub-id>
<pub-id pub-id-type="pmid">15803164</pub-id>
</mixed-citation>
</ref>
<ref id="B86">
<mixed-citation publication-type="journal">
<name>
<surname>Hogan</surname>
<given-names>M</given-names>
</name>
<article-title>Physical and cognitive activity and exercise for older adults: a review</article-title>
<source>Int J Aging Hum Dev</source>
<year>2005</year>
<volume>60</volume>
<issue>2</issue>
<fpage>95</fpage>
<lpage>126</lpage>
<pub-id pub-id-type="doi">10.2190/PTG9-XDVM-YETA-MKXA</pub-id>
<pub-id pub-id-type="pmid">15801385</pub-id>
</mixed-citation>
</ref>
<ref id="B87">
<mixed-citation publication-type="journal">
<name>
<surname>Rosano</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Aizenstein</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Brach</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Longenberger</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Studenski</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Newman</surname>
<given-names>AB</given-names>
</name>
<article-title>Special article: gait measures indicate underlying focal gray matter atrophy in the brain of older adults</article-title>
<source>J Gerontol A Biol Sci Med Sci</source>
<year>2008</year>
<volume>63</volume>
<issue>12</issue>
<fpage>1380</fpage>
<lpage>1388</lpage>
<pub-id pub-id-type="pmid">19126852</pub-id>
</mixed-citation>
</ref>
<ref id="B88">
<mixed-citation publication-type="journal">
<name>
<surname>Yan</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>C</given-names>
</name>
<article-title>Effects of motor practice on cognitive disorders in older adults</article-title>
<source>Eur Rev Aging Phys Act</source>
<year>2009</year>
<volume>6</volume>
<issue>2</issue>
<fpage>67</fpage>
<lpage>74</lpage>
<pub-id pub-id-type="doi">10.1007/s11556-009-0049-6</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
<affiliations>
<list>
<country>
<li>Suisse</li>
</country>
<region>
<li>Canton de Zurich</li>
</region>
<settlement>
<li>Zurich</li>
</settlement>
<orgName>
<li>École polytechnique fédérale de Zurich</li>
</orgName>
</list>
<tree>
<country name="Suisse">
<region name="Canton de Zurich">
<name sortKey="Pichierri, Giuseppe" sort="Pichierri, Giuseppe" uniqKey="Pichierri G" first="Giuseppe" last="Pichierri">Giuseppe Pichierri</name>
</region>
<name sortKey="De Bruin, Eling D" sort="De Bruin, Eling D" uniqKey="De Bruin E" first="Eling D" last="De Bruin">Eling D. De Bruin</name>
<name sortKey="Murer, Kurt" sort="Murer, Kurt" uniqKey="Murer K" first="Kurt" last="Murer">Kurt Murer</name>
<name sortKey="Wolf, Peter" sort="Wolf, Peter" uniqKey="Wolf P" first="Peter" last="Wolf">Peter Wolf</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A74 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 001A74 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     PMC:3147016
   |texte=   Cognitive and cognitive-motor interventions affecting physical functioning: A systematic review
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:21651800" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024