Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Optimal transseptal puncture location for robot‐assisted left atrial catheter ablation

Identifieur interne : 002C27 ( Istex/Corpus ); précédent : 002C26; suivant : 002C28

Optimal transseptal puncture location for robot‐assisted left atrial catheter ablation

Auteurs : J. Jayender ; R. V. Patel ; G. F. Michaud ; N. Hata

Source :

RBID : ISTEX:525C9128B4731223B7A3C9654CC3EE69C9473D11

English descriptors

Abstract

Background: The preferred method of treatment for atrial fibrillation (AF) is by catheter ablation, in which a catheter is guided into the left atrium through a transseptal puncture. However, the transseptal puncture constrains the catheter, thereby limiting its manoeuvrability and increasing the difficulty in reaching various locations in the left atrium. In this paper, we address the problem of choosing the optimal transseptal puncture location for performing cardiac ablation to obtain maximum manoeuvrability of the catheter. Methods: We have employed an optimization algorithm to maximize the global isotropy index (GII) to evaluate the optimal transseptal puncture location. As part of this algorithm, a novel kinematic model for the catheter has been developed, based on a continuum robot model. Pre‐operative MR/CT images of the heart are segmented using the open source image‐guided therapy software, 3D Slicer, to obtain models of the left atrium and septal wall. These models are input to the optimization algorithm to evaluate the optimal transseptal puncture location. Results: The continuum robot model accurately describes the kinematics of the catheter. Simulation and experimental results for the optimal transseptal puncture location are presented in this paper. The optimization algorithm generates discrete points on the septal wall for which the dexterity of the catheter in the left atrium is maximum, corresponding to a GII of 0.4362. Conclusion: We have developed an optimization algorithm based on the GII to evaluate the optimal position of the transseptal puncture for left atrial cardiac ablation. Copyright © 2011 John Wiley & Sons, Ltd.

Url:
DOI: 10.1002/rcs.388

Links to Exploration step

ISTEX:525C9128B4731223B7A3C9654CC3EE69C9473D11

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Optimal transseptal puncture location for robot‐assisted left atrial catheter ablation</title>
<author>
<name sortKey="Jayender, J" sort="Jayender, J" uniqKey="Jayender J" first="J." last="Jayender">J. Jayender</name>
<affiliation>
<mods:affiliation>Surgical Planning Laboratory, Department of Radiology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Clinical Image Guidance Laboratory, Center for Center for Integration of Medicine, and Innovative Technology, Massachusetts General Hospital, Boston, MA, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Patel, R V" sort="Patel, R V" uniqKey="Patel R" first="R. V." last="Patel">R. V. Patel</name>
<affiliation>
<mods:affiliation>Department of Electrical and Computer Engineering and Department of Surgery, University of Western Ontario, Canadian Surgical Technologies and Advanced Robotics (CSTAR), London, ON, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Michaud, G F" sort="Michaud, G F" uniqKey="Michaud G" first="G. F." last="Michaud">G. F. Michaud</name>
<affiliation>
<mods:affiliation>Department of Cardiology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hata, N" sort="Hata, N" uniqKey="Hata N" first="N." last="Hata">N. Hata</name>
<affiliation>
<mods:affiliation>Surgical Planning Laboratory, Department of Radiology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:525C9128B4731223B7A3C9654CC3EE69C9473D11</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1002/rcs.388</idno>
<idno type="url">https://api.istex.fr/document/525C9128B4731223B7A3C9654CC3EE69C9473D11/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002C27</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Optimal transseptal puncture location for robot‐assisted left atrial catheter ablation</title>
<author>
<name sortKey="Jayender, J" sort="Jayender, J" uniqKey="Jayender J" first="J." last="Jayender">J. Jayender</name>
<affiliation>
<mods:affiliation>Surgical Planning Laboratory, Department of Radiology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Clinical Image Guidance Laboratory, Center for Center for Integration of Medicine, and Innovative Technology, Massachusetts General Hospital, Boston, MA, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Patel, R V" sort="Patel, R V" uniqKey="Patel R" first="R. V." last="Patel">R. V. Patel</name>
<affiliation>
<mods:affiliation>Department of Electrical and Computer Engineering and Department of Surgery, University of Western Ontario, Canadian Surgical Technologies and Advanced Robotics (CSTAR), London, ON, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Michaud, G F" sort="Michaud, G F" uniqKey="Michaud G" first="G. F." last="Michaud">G. F. Michaud</name>
<affiliation>
<mods:affiliation>Department of Cardiology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hata, N" sort="Hata, N" uniqKey="Hata N" first="N." last="Hata">N. Hata</name>
<affiliation>
<mods:affiliation>Surgical Planning Laboratory, Department of Radiology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">The International Journal of Medical Robotics and Computer Assisted Surgery</title>
<title level="j" type="abbrev">Int. J. Med. Robotics Comput. Assist. Surg.</title>
<idno type="ISSN">1478-5951</idno>
<idno type="eISSN">1478-596X</idno>
<imprint>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2011-06">2011-06</date>
<biblScope unit="volume">7</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="193">193</biblScope>
<biblScope unit="page" to="201">201</biblScope>
</imprint>
<idno type="ISSN">1478-5951</idno>
</series>
<idno type="istex">525C9128B4731223B7A3C9654CC3EE69C9473D11</idno>
<idno type="DOI">10.1002/rcs.388</idno>
<idno type="ArticleID">RCS388</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1478-5951</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>cardiac ablation</term>
<term>continuum robot</term>
<term>global isotropy index</term>
<term>optimal port</term>
<term>robot‐assisted</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Background: The preferred method of treatment for atrial fibrillation (AF) is by catheter ablation, in which a catheter is guided into the left atrium through a transseptal puncture. However, the transseptal puncture constrains the catheter, thereby limiting its manoeuvrability and increasing the difficulty in reaching various locations in the left atrium. In this paper, we address the problem of choosing the optimal transseptal puncture location for performing cardiac ablation to obtain maximum manoeuvrability of the catheter. Methods: We have employed an optimization algorithm to maximize the global isotropy index (GII) to evaluate the optimal transseptal puncture location. As part of this algorithm, a novel kinematic model for the catheter has been developed, based on a continuum robot model. Pre‐operative MR/CT images of the heart are segmented using the open source image‐guided therapy software, 3D Slicer, to obtain models of the left atrium and septal wall. These models are input to the optimization algorithm to evaluate the optimal transseptal puncture location. Results: The continuum robot model accurately describes the kinematics of the catheter. Simulation and experimental results for the optimal transseptal puncture location are presented in this paper. The optimization algorithm generates discrete points on the septal wall for which the dexterity of the catheter in the left atrium is maximum, corresponding to a GII of 0.4362. Conclusion: We have developed an optimization algorithm based on the GII to evaluate the optimal position of the transseptal puncture for left atrial cardiac ablation. Copyright © 2011 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>J. Jayender</name>
<affiliations>
<json:string>Surgical Planning Laboratory, Department of Radiology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA</json:string>
<json:string>Clinical Image Guidance Laboratory, Center for Center for Integration of Medicine, and Innovative Technology, Massachusetts General Hospital, Boston, MA, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>R. V. Patel</name>
<affiliations>
<json:string>Department of Electrical and Computer Engineering and Department of Surgery, University of Western Ontario, Canadian Surgical Technologies and Advanced Robotics (CSTAR), London, ON, Canada</json:string>
</affiliations>
</json:item>
<json:item>
<name>G. F. Michaud</name>
<affiliations>
<json:string>Department of Cardiology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>N. Hata</name>
<affiliations>
<json:string>Surgical Planning Laboratory, Department of Radiology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>cardiac ablation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>continuum robot</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>optimal port</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>robot‐assisted</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>global isotropy index</value>
</json:item>
</subject>
<articleId>
<json:string>RCS388</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<abstract>Background: The preferred method of treatment for atrial fibrillation (AF) is by catheter ablation, in which a catheter is guided into the left atrium through a transseptal puncture. However, the transseptal puncture constrains the catheter, thereby limiting its manoeuvrability and increasing the difficulty in reaching various locations in the left atrium. In this paper, we address the problem of choosing the optimal transseptal puncture location for performing cardiac ablation to obtain maximum manoeuvrability of the catheter. Methods: We have employed an optimization algorithm to maximize the global isotropy index (GII) to evaluate the optimal transseptal puncture location. As part of this algorithm, a novel kinematic model for the catheter has been developed, based on a continuum robot model. Pre‐operative MR/CT images of the heart are segmented using the open source image‐guided therapy software, 3D Slicer, to obtain models of the left atrium and septal wall. These models are input to the optimization algorithm to evaluate the optimal transseptal puncture location. Results: The continuum robot model accurately describes the kinematics of the catheter. Simulation and experimental results for the optimal transseptal puncture location are presented in this paper. The optimization algorithm generates discrete points on the septal wall for which the dexterity of the catheter in the left atrium is maximum, corresponding to a GII of 0.4362. Conclusion: We have developed an optimization algorithm based on the GII to evaluate the optimal position of the transseptal puncture for left atrial cardiac ablation. Copyright © 2011 John Wiley & Sons, Ltd.</abstract>
<qualityIndicators>
<score>7.988</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>595 x 842 pts (A4)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>5</keywordCount>
<abstractCharCount>1670</abstractCharCount>
<pdfWordCount>5688</pdfWordCount>
<pdfCharCount>33181</pdfCharCount>
<pdfPageCount>9</pdfPageCount>
<abstractWordCount>249</abstractWordCount>
</qualityIndicators>
<title>Optimal transseptal puncture location for robot‐assisted left atrial catheter ablation</title>
<genre.original>
<json:string>article</json:string>
</genre.original>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>7</volume>
<publisherId>
<json:string>RCS</json:string>
</publisherId>
<pages>
<total>9</total>
<last>201</last>
<first>193</first>
</pages>
<issn>
<json:string>1478-5951</json:string>
</issn>
<issue>2</issue>
<subject>
<json:item>
<value>Original Article</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1478-596X</json:string>
</eissn>
<title>The International Journal of Medical Robotics and Computer Assisted Surgery</title>
<doi>
<json:string>10.1002/(ISSN)1478-596X</json:string>
</doi>
</host>
<publicationDate>2011</publicationDate>
<copyrightDate>2011</copyrightDate>
<doi>
<json:string>10.1002/rcs.388</json:string>
</doi>
<id>525C9128B4731223B7A3C9654CC3EE69C9473D11</id>
<score>1</score>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/525C9128B4731223B7A3C9654CC3EE69C9473D11/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/525C9128B4731223B7A3C9654CC3EE69C9473D11/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/525C9128B4731223B7A3C9654CC3EE69C9473D11/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Optimal transseptal puncture location for robot‐assisted left atrial catheter ablation</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<availability>
<p>WILEY</p>
</availability>
<date>2011</date>
</publicationStmt>
<notesStmt>
<note>Intelligent Surgical Instruments Project, METI Grant, Japan</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Optimal transseptal puncture location for robot‐assisted left atrial catheter ablation</title>
<author>
<persName>
<forename type="first">J.</forename>
<surname>Jayender</surname>
</persName>
<note type="correspondence">
<p>Correspondence: Surgical Planning Laboratory, Department of Radiology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA.===</p>
</note>
<affiliation>Surgical Planning Laboratory, Department of Radiology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA</affiliation>
<affiliation>Clinical Image Guidance Laboratory, Center for Center for Integration of Medicine, and Innovative Technology, Massachusetts General Hospital, Boston, MA, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">R. V.</forename>
<surname>Patel</surname>
</persName>
<affiliation>Department of Electrical and Computer Engineering and Department of Surgery, University of Western Ontario, Canadian Surgical Technologies and Advanced Robotics (CSTAR), London, ON, Canada</affiliation>
</author>
<author>
<persName>
<forename type="first">G. F.</forename>
<surname>Michaud</surname>
</persName>
<affiliation>Department of Cardiology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">N.</forename>
<surname>Hata</surname>
</persName>
<affiliation>Surgical Planning Laboratory, Department of Radiology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA</affiliation>
</author>
</analytic>
<monogr>
<title level="j">The International Journal of Medical Robotics and Computer Assisted Surgery</title>
<title level="j" type="abbrev">Int. J. Med. Robotics Comput. Assist. Surg.</title>
<idno type="pISSN">1478-5951</idno>
<idno type="eISSN">1478-596X</idno>
<idno type="DOI">10.1002/(ISSN)1478-596X</idno>
<imprint>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2011-06"></date>
<biblScope unit="volume">7</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="193">193</biblScope>
<biblScope unit="page" to="201">201</biblScope>
</imprint>
</monogr>
<idno type="istex">525C9128B4731223B7A3C9654CC3EE69C9473D11</idno>
<idno type="DOI">10.1002/rcs.388</idno>
<idno type="ArticleID">RCS388</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2011</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Background: The preferred method of treatment for atrial fibrillation (AF) is by catheter ablation, in which a catheter is guided into the left atrium through a transseptal puncture. However, the transseptal puncture constrains the catheter, thereby limiting its manoeuvrability and increasing the difficulty in reaching various locations in the left atrium. In this paper, we address the problem of choosing the optimal transseptal puncture location for performing cardiac ablation to obtain maximum manoeuvrability of the catheter. Methods: We have employed an optimization algorithm to maximize the global isotropy index (GII) to evaluate the optimal transseptal puncture location. As part of this algorithm, a novel kinematic model for the catheter has been developed, based on a continuum robot model. Pre‐operative MR/CT images of the heart are segmented using the open source image‐guided therapy software, 3D Slicer, to obtain models of the left atrium and septal wall. These models are input to the optimization algorithm to evaluate the optimal transseptal puncture location. Results: The continuum robot model accurately describes the kinematics of the catheter. Simulation and experimental results for the optimal transseptal puncture location are presented in this paper. The optimization algorithm generates discrete points on the septal wall for which the dexterity of the catheter in the left atrium is maximum, corresponding to a GII of 0.4362. Conclusion: We have developed an optimization algorithm based on the GII to evaluate the optimal position of the transseptal puncture for left atrial cardiac ablation. Copyright © 2011 John Wiley & Sons, Ltd.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>cardiac ablation</term>
</item>
<item>
<term>continuum robot</term>
</item>
<item>
<term>optimal port</term>
</item>
<item>
<term>robot‐assisted</term>
</item>
<item>
<term>global isotropy index</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Original Article</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2011-02-25">Registration</change>
<change when="2011-06">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/525C9128B4731223B7A3C9654CC3EE69C9473D11/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>John Wiley & Sons, Ltd.</publisherName>
<publisherLoc>Chichester, UK</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1478-596X</doi>
<issn type="print">1478-5951</issn>
<issn type="electronic">1478-596X</issn>
<idGroup>
<id type="product" value="RCS"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="INTERNATIONAL JOURNAL OF MEDICAL ROBOTICS AND COMPUTER ASSISTED SURGERY">The International Journal of Medical Robotics and Computer Assisted Surgery</title>
<title type="short">Int. J. Med. Robotics Comput. Assist. Surg.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="20">
<doi origin="wiley" registered="yes">10.1002/rcs.v7.2</doi>
<numberingGroup>
<numbering type="journalVolume" number="7">7</numbering>
<numbering type="journalIssue">2</numbering>
</numberingGroup>
<coverDate startDate="2011-06">June 2011</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="110" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/rcs.388</doi>
<idGroup>
<id type="unit" value="RCS388"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="9"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Original Article</title>
<title type="tocHeading1">Original Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2011 John Wiley & Sons, Ltd.</copyright>
<eventGroup>
<event type="manuscriptAccepted" date="2011-02-25"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.4.9 mode:FullText mathml2tex" date="2011-05-24"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2011-04-27"></event>
<event type="publishedOnlineFinalForm" date="2011-05-23"></event>
<event type="firstOnline" date="2011-04-27"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:4.0.1" date="2014-03-20"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-11-04"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">193</numbering>
<numbering type="pageLast">201</numbering>
</numberingGroup>
<correspondenceTo>Surgical Planning Laboratory, Department of Radiology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA.===</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:RCS.RCS388.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="7"></count>
<count type="tableTotal" number="0"></count>
<count type="referenceTotal" number="28"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Optimal transseptal puncture location for robot‐assisted left atrial catheter ablation</title>
<title type="short" xml:lang="en">Optimal transseptal puncture location for robot‐assisted left atrial catheter ablation</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1 #af4" corresponding="yes">
<personName>
<givenNames>J.</givenNames>
<familyName>Jayender</familyName>
</personName>
<contactDetails>
<email>jayender@bwh.harvard.edu</email>
</contactDetails>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>R. V.</givenNames>
<familyName>Patel</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af3">
<personName>
<givenNames>G. F.</givenNames>
<familyName>Michaud</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>N.</givenNames>
<familyName>Hata</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="US" type="organization">
<unparsedAffiliation>Surgical Planning Laboratory, Department of Radiology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="CA" type="organization">
<unparsedAffiliation>Department of Electrical and Computer Engineering and Department of Surgery, University of Western Ontario, Canadian Surgical Technologies and Advanced Robotics (CSTAR), London, ON, Canada</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af3" countryCode="US" type="organization">
<unparsedAffiliation>Department of Cardiology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af4" countryCode="US" type="organization">
<unparsedAffiliation>Clinical Image Guidance Laboratory, Center for Center for Integration of Medicine, and Innovative Technology, Massachusetts General Hospital, Boston, MA, USA</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">cardiac ablation</keyword>
<keyword xml:id="kwd2">continuum robot</keyword>
<keyword xml:id="kwd3">optimal port</keyword>
<keyword xml:id="kwd4">robot‐assisted</keyword>
<keyword xml:id="kwd5">global isotropy index</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>Intelligent Surgical Instruments Project, METI Grant, Japan</fundingAgency>
</fundingInfo>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<section xml:id="abs1-1">
<title type="main">Background</title>
<p>The preferred method of treatment for atrial fibrillation (AF) is by catheter ablation, in which a catheter is guided into the left atrium through a transseptal puncture. However, the transseptal puncture constrains the catheter, thereby limiting its manoeuvrability and increasing the difficulty in reaching various locations in the left atrium. In this paper, we address the problem of choosing the optimal transseptal puncture location for performing cardiac ablation to obtain maximum manoeuvrability of the catheter.</p>
</section>
<section xml:id="abs1-2">
<title type="main">Methods</title>
<p>We have employed an optimization algorithm to maximize the global isotropy index (GII) to evaluate the optimal transseptal puncture location. As part of this algorithm, a novel kinematic model for the catheter has been developed, based on a continuum robot model. Pre‐operative MR/CT images of the heart are segmented using the open source image‐guided therapy software, 3D Slicer, to obtain models of the left atrium and septal wall. These models are input to the optimization algorithm to evaluate the optimal transseptal puncture location.</p>
</section>
<section xml:id="abs1-3">
<title type="main">Results</title>
<p>The continuum robot model accurately describes the kinematics of the catheter. Simulation and experimental results for the optimal transseptal puncture location are presented in this paper. The optimization algorithm generates discrete points on the septal wall for which the dexterity of the catheter in the left atrium is maximum, corresponding to a GII of 0.4362.</p>
</section>
<section xml:id="abs1-4">
<title type="main">Conclusion</title>
<p>We have developed an optimization algorithm based on the GII to evaluate the optimal position of the transseptal puncture for left atrial cardiac ablation. Copyright © 2011 John Wiley & Sons, Ltd.</p>
</section>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Optimal transseptal puncture location for robot‐assisted left atrial catheter ablation</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Optimal transseptal puncture location for robot‐assisted left atrial catheter ablation</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Optimal transseptal puncture location for robot‐assisted left atrial catheter ablation</title>
</titleInfo>
<name type="personal">
<namePart type="given">J.</namePart>
<namePart type="family">Jayender</namePart>
<affiliation>Surgical Planning Laboratory, Department of Radiology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA</affiliation>
<affiliation>Clinical Image Guidance Laboratory, Center for Center for Integration of Medicine, and Innovative Technology, Massachusetts General Hospital, Boston, MA, USA</affiliation>
<description>Correspondence: Surgical Planning Laboratory, Department of Radiology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA.===</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R. V.</namePart>
<namePart type="family">Patel</namePart>
<affiliation>Department of Electrical and Computer Engineering and Department of Surgery, University of Western Ontario, Canadian Surgical Technologies and Advanced Robotics (CSTAR), London, ON, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">G. F.</namePart>
<namePart type="family">Michaud</namePart>
<affiliation>Department of Cardiology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">N.</namePart>
<namePart type="family">Hata</namePart>
<affiliation>Surgical Planning Laboratory, Department of Radiology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>John Wiley & Sons, Ltd.</publisher>
<place>
<placeTerm type="text">Chichester, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2011-06</dateIssued>
<dateValid encoding="w3cdtf">2011-02-25</dateValid>
<copyrightDate encoding="w3cdtf">2011</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">7</extent>
<extent unit="references">28</extent>
</physicalDescription>
<abstract lang="en">Background: The preferred method of treatment for atrial fibrillation (AF) is by catheter ablation, in which a catheter is guided into the left atrium through a transseptal puncture. However, the transseptal puncture constrains the catheter, thereby limiting its manoeuvrability and increasing the difficulty in reaching various locations in the left atrium. In this paper, we address the problem of choosing the optimal transseptal puncture location for performing cardiac ablation to obtain maximum manoeuvrability of the catheter. Methods: We have employed an optimization algorithm to maximize the global isotropy index (GII) to evaluate the optimal transseptal puncture location. As part of this algorithm, a novel kinematic model for the catheter has been developed, based on a continuum robot model. Pre‐operative MR/CT images of the heart are segmented using the open source image‐guided therapy software, 3D Slicer, to obtain models of the left atrium and septal wall. These models are input to the optimization algorithm to evaluate the optimal transseptal puncture location. Results: The continuum robot model accurately describes the kinematics of the catheter. Simulation and experimental results for the optimal transseptal puncture location are presented in this paper. The optimization algorithm generates discrete points on the septal wall for which the dexterity of the catheter in the left atrium is maximum, corresponding to a GII of 0.4362. Conclusion: We have developed an optimization algorithm based on the GII to evaluate the optimal position of the transseptal puncture for left atrial cardiac ablation. Copyright © 2011 John Wiley & Sons, Ltd.</abstract>
<note type="funding">Intelligent Surgical Instruments Project, METI Grant, Japan</note>
<subject lang="en">
<genre>keywords</genre>
<topic>cardiac ablation</topic>
<topic>continuum robot</topic>
<topic>optimal port</topic>
<topic>robot‐assisted</topic>
<topic>global isotropy index</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>The International Journal of Medical Robotics and Computer Assisted Surgery</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Int. J. Med. Robotics Comput. Assist. Surg.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Original Article</topic>
</subject>
<identifier type="ISSN">1478-5951</identifier>
<identifier type="eISSN">1478-596X</identifier>
<identifier type="DOI">10.1002/(ISSN)1478-596X</identifier>
<identifier type="PublisherID">RCS</identifier>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>7</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>2</number>
</detail>
<extent unit="pages">
<start>193</start>
<end>201</end>
<total>9</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">525C9128B4731223B7A3C9654CC3EE69C9473D11</identifier>
<identifier type="DOI">10.1002/rcs.388</identifier>
<identifier type="ArticleID">RCS388</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2011 John Wiley & Sons, Ltd.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>John Wiley & Sons, Ltd.</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002C27 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 002C27 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:525C9128B4731223B7A3C9654CC3EE69C9473D11
   |texte=   Optimal transseptal puncture location for robot‐assisted left atrial catheter ablation
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024