Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

How to build patient‐specific synthetic abdominal anatomies. An innovative approach from physical toward hybrid surgical simulators

Identifieur interne : 002C26 ( Istex/Corpus ); précédent : 002C25; suivant : 002C27

How to build patient‐specific synthetic abdominal anatomies. An innovative approach from physical toward hybrid surgical simulators

Auteurs : S. Condino ; M. Carbone ; V. Ferrari ; L. Faggioni ; A. Peri ; M. Ferrari ; F. Mosca

Source :

RBID : ISTEX:B2E51D8DD68EC66EFF895EC8427EFD6A432D9E1A

English descriptors

Abstract

Background: According to literature evidence, simulation is of the utmost importance for training and innovative surgical strategies assessment. At present commercial physical simulators are limited to single or only a few anatomical structures and these are often just standard anatomies. Methods: This paper describes a strategy to produce patient‐specific abdominal silicone organs with realistic shapes and colors, starting from radiological images. Synthetic organs can be assembled in a complex physical simulator or, if paired with electromagnetic sensors, in a hybrid environment (mixed reality) to quantify deformations caused by surgical action. Results: A physical trunk phantom with liver, gallbladder, pancreas and a sensorized stomach has been developed. It is coupled with consistent radiological images and a 3D model of the entire upper abdomen. The simulator has been evaluated in quantitative and qualitative terms to quantify its accuracy and utility, respectively. Conclusions: This simulator can be used in the field of abdominal surgery to train students and as a testing environment to assess and validate innovative surgical technologies. Copyright © 2011 John Wiley & Sons, Ltd.

Url:
DOI: 10.1002/rcs.390

Links to Exploration step

ISTEX:B2E51D8DD68EC66EFF895EC8427EFD6A432D9E1A

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">How to build patient‐specific synthetic abdominal anatomies. An innovative approach from physical toward hybrid surgical simulators</title>
<author>
<name sortKey="Condino, S" sort="Condino, S" uniqKey="Condino S" first="S." last="Condino">S. Condino</name>
<affiliation>
<mods:affiliation>EndoCAS Center, Università di Pisa, Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Carbone, M" sort="Carbone, M" uniqKey="Carbone M" first="M." last="Carbone">M. Carbone</name>
<affiliation>
<mods:affiliation>EndoCAS Center, Università di Pisa, Italy</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Scuola Superiore Sant'Anna, Pisa, Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ferrari, V" sort="Ferrari, V" uniqKey="Ferrari V" first="V." last="Ferrari">V. Ferrari</name>
<affiliation>
<mods:affiliation>EndoCAS Center, Università di Pisa, Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Faggioni, L" sort="Faggioni, L" uniqKey="Faggioni L" first="L." last="Faggioni">L. Faggioni</name>
<affiliation>
<mods:affiliation>Divisione di Radiologia Diagnostica e Interventistica, Università di Pisa, Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Peri, A" sort="Peri, A" uniqKey="Peri A" first="A." last="Peri">A. Peri</name>
<affiliation>
<mods:affiliation>Fondazione IRCCS Policlinico San Matteo Pavia, Università di Pavia, Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ferrari, M" sort="Ferrari, M" uniqKey="Ferrari M" first="M." last="Ferrari">M. Ferrari</name>
<affiliation>
<mods:affiliation>EndoCAS Center, Università di Pisa, Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mosca, F" sort="Mosca, F" uniqKey="Mosca F" first="F." last="Mosca">F. Mosca</name>
<affiliation>
<mods:affiliation>EndoCAS Center, Università di Pisa, Italy</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:B2E51D8DD68EC66EFF895EC8427EFD6A432D9E1A</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1002/rcs.390</idno>
<idno type="url">https://api.istex.fr/document/B2E51D8DD68EC66EFF895EC8427EFD6A432D9E1A/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002C26</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">How to build patient‐specific synthetic abdominal anatomies. An innovative approach from physical toward hybrid surgical simulators</title>
<author>
<name sortKey="Condino, S" sort="Condino, S" uniqKey="Condino S" first="S." last="Condino">S. Condino</name>
<affiliation>
<mods:affiliation>EndoCAS Center, Università di Pisa, Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Carbone, M" sort="Carbone, M" uniqKey="Carbone M" first="M." last="Carbone">M. Carbone</name>
<affiliation>
<mods:affiliation>EndoCAS Center, Università di Pisa, Italy</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Scuola Superiore Sant'Anna, Pisa, Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ferrari, V" sort="Ferrari, V" uniqKey="Ferrari V" first="V." last="Ferrari">V. Ferrari</name>
<affiliation>
<mods:affiliation>EndoCAS Center, Università di Pisa, Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Faggioni, L" sort="Faggioni, L" uniqKey="Faggioni L" first="L." last="Faggioni">L. Faggioni</name>
<affiliation>
<mods:affiliation>Divisione di Radiologia Diagnostica e Interventistica, Università di Pisa, Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Peri, A" sort="Peri, A" uniqKey="Peri A" first="A." last="Peri">A. Peri</name>
<affiliation>
<mods:affiliation>Fondazione IRCCS Policlinico San Matteo Pavia, Università di Pavia, Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ferrari, M" sort="Ferrari, M" uniqKey="Ferrari M" first="M." last="Ferrari">M. Ferrari</name>
<affiliation>
<mods:affiliation>EndoCAS Center, Università di Pisa, Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mosca, F" sort="Mosca, F" uniqKey="Mosca F" first="F." last="Mosca">F. Mosca</name>
<affiliation>
<mods:affiliation>EndoCAS Center, Università di Pisa, Italy</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">The International Journal of Medical Robotics and Computer Assisted Surgery</title>
<title level="j" type="abbrev">Int. J. Med. Robotics Comput. Assist. Surg.</title>
<idno type="ISSN">1478-5951</idno>
<idno type="eISSN">1478-596X</idno>
<imprint>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2011-06">2011-06</date>
<biblScope unit="volume">7</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="202">202</biblScope>
<biblScope unit="page" to="213">213</biblScope>
</imprint>
<idno type="ISSN">1478-5951</idno>
</series>
<idno type="istex">B2E51D8DD68EC66EFF895EC8427EFD6A432D9E1A</idno>
<idno type="DOI">10.1002/rcs.390</idno>
<idno type="ArticleID">RCS390</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1478-5951</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>abdominal surgery</term>
<term>hybrid simulators</term>
<term>mixed reality</term>
<term>patient‐specific simulator</term>
<term>physical simulators</term>
<term>segmentation</term>
<term>surgical training</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Background: According to literature evidence, simulation is of the utmost importance for training and innovative surgical strategies assessment. At present commercial physical simulators are limited to single or only a few anatomical structures and these are often just standard anatomies. Methods: This paper describes a strategy to produce patient‐specific abdominal silicone organs with realistic shapes and colors, starting from radiological images. Synthetic organs can be assembled in a complex physical simulator or, if paired with electromagnetic sensors, in a hybrid environment (mixed reality) to quantify deformations caused by surgical action. Results: A physical trunk phantom with liver, gallbladder, pancreas and a sensorized stomach has been developed. It is coupled with consistent radiological images and a 3D model of the entire upper abdomen. The simulator has been evaluated in quantitative and qualitative terms to quantify its accuracy and utility, respectively. Conclusions: This simulator can be used in the field of abdominal surgery to train students and as a testing environment to assess and validate innovative surgical technologies. Copyright © 2011 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>S. Condino</name>
<affiliations>
<json:string>EndoCAS Center, Università di Pisa, Italy</json:string>
</affiliations>
</json:item>
<json:item>
<name>M. Carbone</name>
<affiliations>
<json:string>EndoCAS Center, Università di Pisa, Italy</json:string>
<json:string>Scuola Superiore Sant'Anna, Pisa, Italy</json:string>
</affiliations>
</json:item>
<json:item>
<name>V. Ferrari</name>
<affiliations>
<json:string>EndoCAS Center, Università di Pisa, Italy</json:string>
</affiliations>
</json:item>
<json:item>
<name>L. Faggioni</name>
<affiliations>
<json:string>Divisione di Radiologia Diagnostica e Interventistica, Università di Pisa, Italy</json:string>
</affiliations>
</json:item>
<json:item>
<name>A. Peri</name>
<affiliations>
<json:string>Fondazione IRCCS Policlinico San Matteo Pavia, Università di Pavia, Italy</json:string>
</affiliations>
</json:item>
<json:item>
<name>M. Ferrari</name>
<affiliations>
<json:string>EndoCAS Center, Università di Pisa, Italy</json:string>
</affiliations>
</json:item>
<json:item>
<name>F. Mosca</name>
<affiliations>
<json:string>EndoCAS Center, Università di Pisa, Italy</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>patient‐specific simulator</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>physical simulators</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>hybrid simulators</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>segmentation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>surgical training</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>abdominal surgery</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>mixed reality</value>
</json:item>
</subject>
<articleId>
<json:string>RCS390</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<abstract>Background: According to literature evidence, simulation is of the utmost importance for training and innovative surgical strategies assessment. At present commercial physical simulators are limited to single or only a few anatomical structures and these are often just standard anatomies. Methods: This paper describes a strategy to produce patient‐specific abdominal silicone organs with realistic shapes and colors, starting from radiological images. Synthetic organs can be assembled in a complex physical simulator or, if paired with electromagnetic sensors, in a hybrid environment (mixed reality) to quantify deformations caused by surgical action. Results: A physical trunk phantom with liver, gallbladder, pancreas and a sensorized stomach has been developed. It is coupled with consistent radiological images and a 3D model of the entire upper abdomen. The simulator has been evaluated in quantitative and qualitative terms to quantify its accuracy and utility, respectively. Conclusions: This simulator can be used in the field of abdominal surgery to train students and as a testing environment to assess and validate innovative surgical technologies. Copyright © 2011 John Wiley & Sons, Ltd.</abstract>
<qualityIndicators>
<score>7.088</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>595 x 842 pts (A4)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>7</keywordCount>
<abstractCharCount>1204</abstractCharCount>
<pdfWordCount>5271</pdfWordCount>
<pdfCharCount>34448</pdfCharCount>
<pdfPageCount>12</pdfPageCount>
<abstractWordCount>174</abstractWordCount>
</qualityIndicators>
<title>How to build patient‐specific synthetic abdominal anatomies. An innovative approach from physical toward hybrid surgical simulators</title>
<genre.original>
<json:string>article</json:string>
</genre.original>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>7</volume>
<publisherId>
<json:string>RCS</json:string>
</publisherId>
<pages>
<total>12</total>
<last>213</last>
<first>202</first>
</pages>
<issn>
<json:string>1478-5951</json:string>
</issn>
<issue>2</issue>
<subject>
<json:item>
<value>Original Article</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1478-596X</json:string>
</eissn>
<title>The International Journal of Medical Robotics and Computer Assisted Surgery</title>
<doi>
<json:string>10.1002/(ISSN)1478-596X</json:string>
</doi>
</host>
<publicationDate>2011</publicationDate>
<copyrightDate>2011</copyrightDate>
<doi>
<json:string>10.1002/rcs.390</json:string>
</doi>
<id>B2E51D8DD68EC66EFF895EC8427EFD6A432D9E1A</id>
<score>1</score>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/B2E51D8DD68EC66EFF895EC8427EFD6A432D9E1A/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/B2E51D8DD68EC66EFF895EC8427EFD6A432D9E1A/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/B2E51D8DD68EC66EFF895EC8427EFD6A432D9E1A/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">How to build patient‐specific synthetic abdominal anatomies. An innovative approach from physical toward hybrid surgical simulators</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<availability>
<p>WILEY</p>
</availability>
<date>2011</date>
</publicationStmt>
<notesStmt>
<note>European Community ‘Araknes’</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">How to build patient‐specific synthetic abdominal anatomies. An innovative approach from physical toward hybrid surgical simulators</title>
<author>
<persName>
<forename type="first">S.</forename>
<surname>Condino</surname>
</persName>
<affiliation>EndoCAS Center, Università di Pisa, Italy</affiliation>
</author>
<author>
<persName>
<forename type="first">M.</forename>
<surname>Carbone</surname>
</persName>
<note type="correspondence">
<p>Correspondence: EndoCAS Center, Università di Pisa, Ospedale di Cisanello, Via Paradisa 2, 56124 Pisa, Italy.===</p>
</note>
<affiliation>EndoCAS Center, Università di Pisa, Italy</affiliation>
<affiliation>Scuola Superiore Sant'Anna, Pisa, Italy</affiliation>
</author>
<author>
<persName>
<forename type="first">V.</forename>
<surname>Ferrari</surname>
</persName>
<affiliation>EndoCAS Center, Università di Pisa, Italy</affiliation>
</author>
<author>
<persName>
<forename type="first">L.</forename>
<surname>Faggioni</surname>
</persName>
<affiliation>Divisione di Radiologia Diagnostica e Interventistica, Università di Pisa, Italy</affiliation>
</author>
<author>
<persName>
<forename type="first">A.</forename>
<surname>Peri</surname>
</persName>
<affiliation>Fondazione IRCCS Policlinico San Matteo Pavia, Università di Pavia, Italy</affiliation>
</author>
<author>
<persName>
<forename type="first">M.</forename>
<surname>Ferrari</surname>
</persName>
<affiliation>EndoCAS Center, Università di Pisa, Italy</affiliation>
</author>
<author>
<persName>
<forename type="first">F.</forename>
<surname>Mosca</surname>
</persName>
<affiliation>EndoCAS Center, Università di Pisa, Italy</affiliation>
</author>
</analytic>
<monogr>
<title level="j">The International Journal of Medical Robotics and Computer Assisted Surgery</title>
<title level="j" type="abbrev">Int. J. Med. Robotics Comput. Assist. Surg.</title>
<idno type="pISSN">1478-5951</idno>
<idno type="eISSN">1478-596X</idno>
<idno type="DOI">10.1002/(ISSN)1478-596X</idno>
<imprint>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2011-06"></date>
<biblScope unit="volume">7</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="202">202</biblScope>
<biblScope unit="page" to="213">213</biblScope>
</imprint>
</monogr>
<idno type="istex">B2E51D8DD68EC66EFF895EC8427EFD6A432D9E1A</idno>
<idno type="DOI">10.1002/rcs.390</idno>
<idno type="ArticleID">RCS390</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2011</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Background: According to literature evidence, simulation is of the utmost importance for training and innovative surgical strategies assessment. At present commercial physical simulators are limited to single or only a few anatomical structures and these are often just standard anatomies. Methods: This paper describes a strategy to produce patient‐specific abdominal silicone organs with realistic shapes and colors, starting from radiological images. Synthetic organs can be assembled in a complex physical simulator or, if paired with electromagnetic sensors, in a hybrid environment (mixed reality) to quantify deformations caused by surgical action. Results: A physical trunk phantom with liver, gallbladder, pancreas and a sensorized stomach has been developed. It is coupled with consistent radiological images and a 3D model of the entire upper abdomen. The simulator has been evaluated in quantitative and qualitative terms to quantify its accuracy and utility, respectively. Conclusions: This simulator can be used in the field of abdominal surgery to train students and as a testing environment to assess and validate innovative surgical technologies. Copyright © 2011 John Wiley & Sons, Ltd.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>patient‐specific simulator</term>
</item>
<item>
<term>physical simulators</term>
</item>
<item>
<term>hybrid simulators</term>
</item>
<item>
<term>segmentation</term>
</item>
<item>
<term>surgical training</term>
</item>
<item>
<term>abdominal surgery</term>
</item>
<item>
<term>mixed reality</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Original Article</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2011-03-17">Registration</change>
<change when="2011-06">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/B2E51D8DD68EC66EFF895EC8427EFD6A432D9E1A/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>John Wiley & Sons, Ltd.</publisherName>
<publisherLoc>Chichester, UK</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1478-596X</doi>
<issn type="print">1478-5951</issn>
<issn type="electronic">1478-596X</issn>
<idGroup>
<id type="product" value="RCS"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="INTERNATIONAL JOURNAL OF MEDICAL ROBOTICS AND COMPUTER ASSISTED SURGERY">The International Journal of Medical Robotics and Computer Assisted Surgery</title>
<title type="short">Int. J. Med. Robotics Comput. Assist. Surg.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="20">
<doi origin="wiley" registered="yes">10.1002/rcs.v7.2</doi>
<numberingGroup>
<numbering type="journalVolume" number="7">7</numbering>
<numbering type="journalIssue">2</numbering>
</numberingGroup>
<coverDate startDate="2011-06">June 2011</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="120" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/rcs.390</doi>
<idGroup>
<id type="unit" value="RCS390"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="12"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Original Article</title>
<title type="tocHeading1">Original Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2011 John Wiley & Sons, Ltd.</copyright>
<eventGroup>
<event type="manuscriptAccepted" date="2011-03-17"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.4.9 mode:FullText" date="2011-05-24"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2011-04-27"></event>
<event type="publishedOnlineFinalForm" date="2011-05-23"></event>
<event type="firstOnline" date="2011-04-27"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:4.0.1" date="2014-03-20"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-11-04"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">202</numbering>
<numbering type="pageLast">213</numbering>
</numberingGroup>
<correspondenceTo>EndoCAS Center, Università di Pisa, Ospedale di Cisanello, Via Paradisa 2, 56124 Pisa, Italy.===</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:RCS.RCS390.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="13"></count>
<count type="tableTotal" number="4"></count>
<count type="referenceTotal" number="39"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">How to build patient‐specific synthetic abdominal anatomies. An innovative approach from physical toward hybrid surgical simulators</title>
<title type="short" xml:lang="en">From physical toward hybrid surgical simulators</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>S.</givenNames>
<familyName>Condino</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af1 #af4" corresponding="yes">
<personName>
<givenNames>M.</givenNames>
<familyName>Carbone</familyName>
</personName>
<contactDetails>
<email>marina.carbone@endocas.org</email>
</contactDetails>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>V.</givenNames>
<familyName>Ferrari</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>L.</givenNames>
<familyName>Faggioni</familyName>
</personName>
</creator>
<creator xml:id="au5" creatorRole="author" affiliationRef="#af3">
<personName>
<givenNames>A.</givenNames>
<familyName>Peri</familyName>
</personName>
</creator>
<creator xml:id="au6" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>M.</givenNames>
<familyName>Ferrari</familyName>
</personName>
</creator>
<creator xml:id="au7" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>F.</givenNames>
<familyName>Mosca</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="IT" type="organization">
<unparsedAffiliation>EndoCAS Center, Università di Pisa, Italy</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="IT" type="organization">
<unparsedAffiliation>Divisione di Radiologia Diagnostica e Interventistica, Università di Pisa, Italy</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af3" countryCode="IT" type="organization">
<unparsedAffiliation>Fondazione IRCCS Policlinico San Matteo Pavia, Università di Pavia, Italy</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af4" countryCode="IT" type="organization">
<unparsedAffiliation>Scuola Superiore Sant'Anna, Pisa, Italy</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">patient‐specific simulator</keyword>
<keyword xml:id="kwd2">physical simulators</keyword>
<keyword xml:id="kwd3">hybrid simulators</keyword>
<keyword xml:id="kwd4">segmentation</keyword>
<keyword xml:id="kwd5">surgical training</keyword>
<keyword xml:id="kwd6">abdominal surgery</keyword>
<keyword xml:id="kwd7">mixed reality</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>European Community ‘Araknes’</fundingAgency>
</fundingInfo>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<section xml:id="abs1-1">
<title type="main">Background</title>
<p>According to literature evidence, simulation is of the utmost importance for training and innovative surgical strategies assessment. At present commercial physical simulators are limited to single or only a few anatomical structures and these are often just standard anatomies.</p>
</section>
<section xml:id="abs1-2">
<title type="main">Methods</title>
<p>This paper describes a strategy to produce patient‐specific abdominal silicone organs with realistic shapes and colors, starting from radiological images. Synthetic organs can be assembled in a complex physical simulator or, if paired with electromagnetic sensors, in a hybrid environment (mixed reality) to quantify deformations caused by surgical action.</p>
</section>
<section xml:id="abs1-3">
<title type="main">Results</title>
<p>A physical trunk phantom with liver, gallbladder, pancreas and a sensorized stomach has been developed. It is coupled with consistent radiological images and a 3D model of the entire upper abdomen. The simulator has been evaluated in quantitative and qualitative terms to quantify its accuracy and utility, respectively.</p>
</section>
<section xml:id="abs1-4">
<title type="main">Conclusions</title>
<p>This simulator can be used in the field of abdominal surgery to train students and as a testing environment to assess and validate innovative surgical technologies. Copyright © 2011 John Wiley & Sons, Ltd.</p>
</section>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>How to build patient‐specific synthetic abdominal anatomies. An innovative approach from physical toward hybrid surgical simulators</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>From physical toward hybrid surgical simulators</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>How to build patient‐specific synthetic abdominal anatomies. An innovative approach from physical toward hybrid surgical simulators</title>
</titleInfo>
<name type="personal">
<namePart type="given">S.</namePart>
<namePart type="family">Condino</namePart>
<affiliation>EndoCAS Center, Università di Pisa, Italy</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M.</namePart>
<namePart type="family">Carbone</namePart>
<affiliation>EndoCAS Center, Università di Pisa, Italy</affiliation>
<affiliation>Scuola Superiore Sant'Anna, Pisa, Italy</affiliation>
<description>Correspondence: EndoCAS Center, Università di Pisa, Ospedale di Cisanello, Via Paradisa 2, 56124 Pisa, Italy.===</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">V.</namePart>
<namePart type="family">Ferrari</namePart>
<affiliation>EndoCAS Center, Università di Pisa, Italy</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">L.</namePart>
<namePart type="family">Faggioni</namePart>
<affiliation>Divisione di Radiologia Diagnostica e Interventistica, Università di Pisa, Italy</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A.</namePart>
<namePart type="family">Peri</namePart>
<affiliation>Fondazione IRCCS Policlinico San Matteo Pavia, Università di Pavia, Italy</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M.</namePart>
<namePart type="family">Ferrari</namePart>
<affiliation>EndoCAS Center, Università di Pisa, Italy</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">F.</namePart>
<namePart type="family">Mosca</namePart>
<affiliation>EndoCAS Center, Università di Pisa, Italy</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>John Wiley & Sons, Ltd.</publisher>
<place>
<placeTerm type="text">Chichester, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2011-06</dateIssued>
<dateValid encoding="w3cdtf">2011-03-17</dateValid>
<copyrightDate encoding="w3cdtf">2011</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">13</extent>
<extent unit="tables">4</extent>
<extent unit="references">39</extent>
</physicalDescription>
<abstract lang="en">Background: According to literature evidence, simulation is of the utmost importance for training and innovative surgical strategies assessment. At present commercial physical simulators are limited to single or only a few anatomical structures and these are often just standard anatomies. Methods: This paper describes a strategy to produce patient‐specific abdominal silicone organs with realistic shapes and colors, starting from radiological images. Synthetic organs can be assembled in a complex physical simulator or, if paired with electromagnetic sensors, in a hybrid environment (mixed reality) to quantify deformations caused by surgical action. Results: A physical trunk phantom with liver, gallbladder, pancreas and a sensorized stomach has been developed. It is coupled with consistent radiological images and a 3D model of the entire upper abdomen. The simulator has been evaluated in quantitative and qualitative terms to quantify its accuracy and utility, respectively. Conclusions: This simulator can be used in the field of abdominal surgery to train students and as a testing environment to assess and validate innovative surgical technologies. Copyright © 2011 John Wiley & Sons, Ltd.</abstract>
<note type="funding">European Community ‘Araknes’</note>
<subject lang="en">
<genre>keywords</genre>
<topic>patient‐specific simulator</topic>
<topic>physical simulators</topic>
<topic>hybrid simulators</topic>
<topic>segmentation</topic>
<topic>surgical training</topic>
<topic>abdominal surgery</topic>
<topic>mixed reality</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>The International Journal of Medical Robotics and Computer Assisted Surgery</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Int. J. Med. Robotics Comput. Assist. Surg.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Original Article</topic>
</subject>
<identifier type="ISSN">1478-5951</identifier>
<identifier type="eISSN">1478-596X</identifier>
<identifier type="DOI">10.1002/(ISSN)1478-596X</identifier>
<identifier type="PublisherID">RCS</identifier>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>7</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>2</number>
</detail>
<extent unit="pages">
<start>202</start>
<end>213</end>
<total>12</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">B2E51D8DD68EC66EFF895EC8427EFD6A432D9E1A</identifier>
<identifier type="DOI">10.1002/rcs.390</identifier>
<identifier type="ArticleID">RCS390</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2011 John Wiley & Sons, Ltd.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>John Wiley & Sons, Ltd.</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002C26 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 002C26 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:B2E51D8DD68EC66EFF895EC8427EFD6A432D9E1A
   |texte=   How to build patient‐specific synthetic abdominal anatomies. An innovative approach from physical toward hybrid surgical simulators
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024