Serveur d'exploration Stress et Covid

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Environmental cues regulate epigenetic reprogramming of airway-resident memory CD8+ T cells.

Identifieur interne : 000158 ( PubMed/Curation ); précédent : 000157; suivant : 000159

Environmental cues regulate epigenetic reprogramming of airway-resident memory CD8+ T cells.

Auteurs : Sarah L. Hayward [États-Unis] ; Christopher D. Scharer [États-Unis] ; Emily K. Cartwright [États-Unis] ; Shiki Takamura [Japon] ; Zheng-Rong Tiger Li [États-Unis] ; Jeremy M. Boss [États-Unis] ; Jacob E. Kohlmeier [États-Unis]

Source :

RBID : pubmed:31953534

Descripteurs français

English descriptors

Abstract

Tissue-resident memory T cells (TRM cells) are critical for cellular immunity to respiratory pathogens and reside in both the airways and the interstitium. In the present study, we found that the airway environment drove transcriptional and epigenetic changes that specifically regulated the cytolytic functions of airway TRM cells and promoted apoptosis due to amino acid starvation and activation of the integrated stress response. Comparison of airway TRM cells and splenic effector-memory T cells transferred into the airways indicated that the environment was necessary to activate these pathways, but did not induce TRM cell lineage reprogramming. Importantly, activation of the integrated stress response was reversed in airway TRM cells placed in a nutrient-rich environment. Our data defined the genetic programs of distinct lung TRM cell populations and show that local environmental cues altered airway TRM cells to limit cytolytic function and promote cell death, which ultimately leads to fewer TRM cells in the lung.

DOI: 10.1038/s41590-019-0584-x
PubMed: 31953534

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:31953534

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Environmental cues regulate epigenetic reprogramming of airway-resident memory CD8
<sup>+</sup>
T cells.</title>
<author>
<name sortKey="Hayward, Sarah L" sort="Hayward, Sarah L" uniqKey="Hayward S" first="Sarah L" last="Hayward">Sarah L. Hayward</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Scharer, Christopher D" sort="Scharer, Christopher D" uniqKey="Scharer C" first="Christopher D" last="Scharer">Christopher D. Scharer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Cartwright, Emily K" sort="Cartwright, Emily K" uniqKey="Cartwright E" first="Emily K" last="Cartwright">Emily K. Cartwright</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Takamura, Shiki" sort="Takamura, Shiki" uniqKey="Takamura S" first="Shiki" last="Takamura">Shiki Takamura</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Immunology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Immunology, Kindai University Faculty of Medicine, Osaka-Sayama</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Li, Zheng Rong Tiger" sort="Li, Zheng Rong Tiger" uniqKey="Li Z" first="Zheng-Rong Tiger" last="Li">Zheng-Rong Tiger Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Boss, Jeremy M" sort="Boss, Jeremy M" uniqKey="Boss J" first="Jeremy M" last="Boss">Jeremy M. Boss</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kohlmeier, Jacob E" sort="Kohlmeier, Jacob E" uniqKey="Kohlmeier J" first="Jacob E" last="Kohlmeier">Jacob E. Kohlmeier</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA. jkohlmeier@emory.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31953534</idno>
<idno type="pmid">31953534</idno>
<idno type="doi">10.1038/s41590-019-0584-x</idno>
<idno type="wicri:Area/PubMed/Corpus">000158</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000158</idno>
<idno type="wicri:Area/PubMed/Curation">000158</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000158</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Environmental cues regulate epigenetic reprogramming of airway-resident memory CD8
<sup>+</sup>
T cells.</title>
<author>
<name sortKey="Hayward, Sarah L" sort="Hayward, Sarah L" uniqKey="Hayward S" first="Sarah L" last="Hayward">Sarah L. Hayward</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Scharer, Christopher D" sort="Scharer, Christopher D" uniqKey="Scharer C" first="Christopher D" last="Scharer">Christopher D. Scharer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Cartwright, Emily K" sort="Cartwright, Emily K" uniqKey="Cartwright E" first="Emily K" last="Cartwright">Emily K. Cartwright</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Takamura, Shiki" sort="Takamura, Shiki" uniqKey="Takamura S" first="Shiki" last="Takamura">Shiki Takamura</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Immunology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Immunology, Kindai University Faculty of Medicine, Osaka-Sayama</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Li, Zheng Rong Tiger" sort="Li, Zheng Rong Tiger" uniqKey="Li Z" first="Zheng-Rong Tiger" last="Li">Zheng-Rong Tiger Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Boss, Jeremy M" sort="Boss, Jeremy M" uniqKey="Boss J" first="Jeremy M" last="Boss">Jeremy M. Boss</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kohlmeier, Jacob E" sort="Kohlmeier, Jacob E" uniqKey="Kohlmeier J" first="Jacob E" last="Kohlmeier">Jacob E. Kohlmeier</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA. jkohlmeier@emory.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nature immunology</title>
<idno type="eISSN">1529-2916</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Apoptosis (immunology)</term>
<term>CD8-Positive T-Lymphocytes (cytology)</term>
<term>CD8-Positive T-Lymphocytes (immunology)</term>
<term>Cell Survival (genetics)</term>
<term>Cell Survival (immunology)</term>
<term>Cellular Microenvironment (genetics)</term>
<term>Cellular Microenvironment (immunology)</term>
<term>Cellular Reprogramming (genetics)</term>
<term>Cellular Reprogramming (immunology)</term>
<term>Epigenesis, Genetic (immunology)</term>
<term>Female</term>
<term>Immunologic Memory (genetics)</term>
<term>Lung (cytology)</term>
<term>Lung (immunology)</term>
<term>Male</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Orthomyxoviridae Infections (genetics)</term>
<term>Orthomyxoviridae Infections (immunology)</term>
<term>Orthomyxoviridae Infections (pathology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Apoptose (immunologie)</term>
<term>Femelle</term>
<term>Infections à Orthomyxoviridae (anatomopathologie)</term>
<term>Infections à Orthomyxoviridae (génétique)</term>
<term>Infections à Orthomyxoviridae (immunologie)</term>
<term>Lymphocytes T CD8+ (cytologie)</term>
<term>Lymphocytes T CD8+ (immunologie)</term>
<term>Microenvironnement cellulaire (génétique)</term>
<term>Microenvironnement cellulaire (immunologie)</term>
<term>Mâle</term>
<term>Mémoire immunologique (génétique)</term>
<term>Poumon (cytologie)</term>
<term>Poumon (immunologie)</term>
<term>Reprogrammation cellulaire (génétique)</term>
<term>Reprogrammation cellulaire (immunologie)</term>
<term>Souris</term>
<term>Souris de lignée C57BL</term>
<term>Survie cellulaire (génétique)</term>
<term>Survie cellulaire (immunologie)</term>
<term>Épigenèse génétique (immunologie)</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Infections à Orthomyxoviridae</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Lymphocytes T CD8+</term>
<term>Poumon</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>CD8-Positive T-Lymphocytes</term>
<term>Lung</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cell Survival</term>
<term>Cellular Microenvironment</term>
<term>Cellular Reprogramming</term>
<term>Immunologic Memory</term>
<term>Orthomyxoviridae Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Infections à Orthomyxoviridae</term>
<term>Microenvironnement cellulaire</term>
<term>Mémoire immunologique</term>
<term>Reprogrammation cellulaire</term>
<term>Survie cellulaire</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Apoptose</term>
<term>Infections à Orthomyxoviridae</term>
<term>Lymphocytes T CD8+</term>
<term>Microenvironnement cellulaire</term>
<term>Poumon</term>
<term>Reprogrammation cellulaire</term>
<term>Survie cellulaire</term>
<term>Épigenèse génétique</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Apoptosis</term>
<term>CD8-Positive T-Lymphocytes</term>
<term>Cell Survival</term>
<term>Cellular Microenvironment</term>
<term>Cellular Reprogramming</term>
<term>Epigenesis, Genetic</term>
<term>Lung</term>
<term>Orthomyxoviridae Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Orthomyxoviridae Infections</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Female</term>
<term>Male</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Femelle</term>
<term>Mâle</term>
<term>Souris</term>
<term>Souris de lignée C57BL</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Tissue-resident memory T cells (T
<sub>RM</sub>
cells) are critical for cellular immunity to respiratory pathogens and reside in both the airways and the interstitium. In the present study, we found that the airway environment drove transcriptional and epigenetic changes that specifically regulated the cytolytic functions of airway T
<sub>RM</sub>
cells and promoted apoptosis due to amino acid starvation and activation of the integrated stress response. Comparison of airway T
<sub>RM</sub>
cells and splenic effector-memory T cells transferred into the airways indicated that the environment was necessary to activate these pathways, but did not induce T
<sub>RM</sub>
cell lineage reprogramming. Importantly, activation of the integrated stress response was reversed in airway T
<sub>RM</sub>
cells placed in a nutrient-rich environment. Our data defined the genetic programs of distinct lung T
<sub>RM</sub>
cell populations and show that local environmental cues altered airway T
<sub>RM</sub>
cells to limit cytolytic function and promote cell death, which ultimately leads to fewer T
<sub>RM</sub>
cells in the lung.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31953534</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>04</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1529-2916</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>21</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2020</Year>
<Month>03</Month>
</PubDate>
</JournalIssue>
<Title>Nature immunology</Title>
<ISOAbbreviation>Nat. Immunol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Environmental cues regulate epigenetic reprogramming of airway-resident memory CD8
<sup>+</sup>
T cells.</ArticleTitle>
<Pagination>
<MedlinePgn>309-320</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41590-019-0584-x</ELocationID>
<Abstract>
<AbstractText>Tissue-resident memory T cells (T
<sub>RM</sub>
cells) are critical for cellular immunity to respiratory pathogens and reside in both the airways and the interstitium. In the present study, we found that the airway environment drove transcriptional and epigenetic changes that specifically regulated the cytolytic functions of airway T
<sub>RM</sub>
cells and promoted apoptosis due to amino acid starvation and activation of the integrated stress response. Comparison of airway T
<sub>RM</sub>
cells and splenic effector-memory T cells transferred into the airways indicated that the environment was necessary to activate these pathways, but did not induce T
<sub>RM</sub>
cell lineage reprogramming. Importantly, activation of the integrated stress response was reversed in airway T
<sub>RM</sub>
cells placed in a nutrient-rich environment. Our data defined the genetic programs of distinct lung T
<sub>RM</sub>
cell populations and show that local environmental cues altered airway T
<sub>RM</sub>
cells to limit cytolytic function and promote cell death, which ultimately leads to fewer T
<sub>RM</sub>
cells in the lung.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hayward</LastName>
<ForeName>Sarah L</ForeName>
<Initials>SL</Initials>
<Identifier Source="ORCID">0000-0001-7052-5556</Identifier>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Scharer</LastName>
<ForeName>Christopher D</ForeName>
<Initials>CD</Initials>
<Identifier Source="ORCID">0000-0001-7716-8504</Identifier>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cartwright</LastName>
<ForeName>Emily K</ForeName>
<Initials>EK</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Takamura</LastName>
<ForeName>Shiki</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Immunology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Zheng-Rong Tiger</ForeName>
<Initials>ZT</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Boss</LastName>
<ForeName>Jeremy M</ForeName>
<Initials>JM</Initials>
<Identifier Source="ORCID">0000-0002-2432-1840</Identifier>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kohlmeier</LastName>
<ForeName>Jacob E</ForeName>
<Initials>JE</Initials>
<Identifier Source="ORCID">0000-0002-7209-6641</Identifier>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA. jkohlmeier@emory.edu.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Emory-UGA Center of Excellence for Influenza Research and Surveillance, Atlanta, GA, USA. jkohlmeier@emory.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>HHSN272201300006C</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL122559</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P01 AI125180</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>F31 HL136101</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HHSN272201400004C</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI113021</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL138508</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>01</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Nat Immunol</MedlineTA>
<NlmUniqueID>100941354</NlmUniqueID>
<ISSNLinking>1529-2908</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017209" MajorTopicYN="N">Apoptosis</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018414" MajorTopicYN="N">CD8-Positive T-Lymphocytes</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002470" MajorTopicYN="N">Cell Survival</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060833" MajorTopicYN="N">Cellular Microenvironment</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065150" MajorTopicYN="N">Cellular Reprogramming</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044127" MajorTopicYN="N">Epigenesis, Genetic</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007156" MajorTopicYN="N">Immunologic Memory</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008168" MajorTopicYN="N">Lung</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009976" MajorTopicYN="N">Orthomyxoviridae Infections</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>11</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>12</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>1</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>4</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>1</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31953534</ArticleId>
<ArticleId IdType="doi">10.1038/s41590-019-0584-x</ArticleId>
<ArticleId IdType="pii">10.1038/s41590-019-0584-x</ArticleId>
<ArticleId IdType="pmc">PMC7044042</ArticleId>
<ArticleId IdType="mid">NIHMS1546839</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 2007 Dec 1;179(11):7220-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18025163</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Comput Biol. 2013;9(8):e1003118</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23950696</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2009;4(5):e5468</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19424493</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Immunol. 2014 Jan;14(1):24-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24336101</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mucosal Immunol. 2019 Mar;12(2):403-412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30664708</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 2001 Feb 1;166(3):1813-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11160228</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Immunity. 2015 Dec 15;43(6):1101-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26682984</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Clin Invest. 2008 Oct;118(10):3478-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18802496</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Sci Immunol. 2017 Jan 6;2(7):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28783666</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2015 Apr 24;290(17):11108-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25770212</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Immunol. 2009 May;10(5):524-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19305395</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Leukoc Biol. 2014 Feb;95(2):215-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24006506</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Immunol. 2016 Oct;17(10):1216-1225</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27500631</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Rep. 2017 Sep 19;20(12):2921-2934</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28930685</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mucosal Immunol. 2017 Sep;10(5):1294-1309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28051085</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Biol. 2009;10(3):R25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19261174</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2006 May 1;22(9):1036-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16500937</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell. 2014 Dec 4;159(6):1327-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25480297</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 1992 Aug 15;149(4):1319-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1354233</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Protoc. 2009;4(1):44-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19131956</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mucosal Immunol. 2018 Jul;11(4):1071-1078</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29453412</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2016 Apr 22;352(6284):459-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27102484</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Exp Med. 2016 Dec 12;213(13):3057-3073</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27815325</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>EMBO Rep. 2016 Oct;17(10):1374-1395</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27629041</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Immunol. 2013 May;14(5):509-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23542740</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Rep. 2018 Sep 25;24(13):3374-3382.e3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30257199</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 1994 Feb 15;152(4):1653-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8120375</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Exp Med. 2007 Jul 9;204(7):1625-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17606632</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Immunol. 2016 Dec;17(12):1467-1478</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27776108</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 2017 Mar 15;198(6):2238-2243</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28179496</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 2006 Jan 1;176(1):537-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16365448</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2010 Jan 1;26(1):139-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19910308</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Cell. 2013 Aug;24(15):2477-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23761072</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Methods. 2013 Dec;10(12):1213-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24097267</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2011 Jan 26;6(1):e16245</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21298112</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Biol. 2008;9(9):R137</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18798982</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Exp Med. 2011 Aug 1;208(8):1621-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21788409</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 1999 Jan 1;283(5398):83-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9872747</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell. 2014 Dec 4;159(6):1312-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25480296</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16199517</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 2007 Apr 15;178(8):4721-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17404250</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Sci Rep. 2016 Jun 01;6:27030</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27249108</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Sci Immunol. 2017 Jun 2;2(12):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28783656</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Cell. 2010 May 28;38(4):576-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20513432</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Biol. 2013 Apr 25;14(4):R36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23618408</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Immunity. 2010 Jul 23;33(1):96-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20637658</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Immunity. 2008 Jul 18;29(1):101-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18617426</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2012 Feb 29;483(7388):227-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22388819</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Exp Med. 1991 Oct 1;174(4):875-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1919440</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 2015 Jul 1;195(1):203-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26026054</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2016 Apr 29;291(18):9700-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26945935</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/StressCovidV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000158 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000158 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    StressCovidV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:31953534
   |texte=   Environmental cues regulate epigenetic reprogramming of airway-resident memory CD8+ T cells.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:31953534" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a StressCovidV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed May 6 16:44:09 2020. Site generation: Sun Mar 28 08:26:57 2021