Serveur d'exploration Stress et Covid

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Influenza virus replication in lung epithelial cells depends on redox-sensitive pathways activated by NOX4-derived ROS.

Identifieur interne : 000456 ( PubMed/Corpus ); précédent : 000455; suivant : 000457

Influenza virus replication in lung epithelial cells depends on redox-sensitive pathways activated by NOX4-derived ROS.

Auteurs : Donatella Amatore ; Rossella Sgarbanti ; Katia Aquilano ; Sara Baldelli ; Dolores Limongi ; Livia Civitelli ; Lucia Nencioni ; Enrico Garaci ; Maria Rosa Ciriolo ; Anna Teresa Palamara

Source :

RBID : pubmed:25154738

English descriptors

Abstract

An overproduction of reactive oxygen species (ROS) mediated by NADPH oxidase 2 (NOX2) has been related to airway inflammation typical of influenza infection. Virus-induced oxidative stress may also control viral replication, but the mechanisms underlying ROS production, as well as their role in activating intracellular pathways and specific steps of viral life cycle under redox control have to be fully elucidated. In this study, we demonstrate that influenza A virus infection of lung epithelial cells causes a significant ROS increase that depends mainly on NOX4, which is upregulated at both mRNA and protein levels, while the expression of NOX2, the primary source of ROS in inflammatory cells, is downregulated. Inhibition of NOX4 activity through chemical inhibitors or RNA silencing blocks the ROS increase, prevents MAPK phosphorylation, and inhibits viral ribonucleoprotein (vRNP) nuclear export and viral release. Overall these data, obtained in cell lines and primary culture, describe a so far unrecognized role for NOX4-derived ROS in activating redox-regulated intracellular pathways during influenza virus infection and highlight their relevance in controlling specific steps of viral replication in epithelial cells. Pharmacological modulation of NOX4-mediated ROS production may open the way for new therapeutic approaches to fighting influenza by targeting cell and not the virus.

DOI: 10.1111/cmi.12343
PubMed: 25154738

Links to Exploration step

pubmed:25154738

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Influenza virus replication in lung epithelial cells depends on redox-sensitive pathways activated by NOX4-derived ROS.</title>
<author>
<name sortKey="Amatore, Donatella" sort="Amatore, Donatella" uniqKey="Amatore D" first="Donatella" last="Amatore">Donatella Amatore</name>
<affiliation>
<nlm:affiliation>Department of Public Health and Infectious Diseases, Pasteur Institute-Fondazione Cenci-Bolognetti, Sapienza University of Rome, Rome, 00185, Italy; CEINGE Advanced Biotechnology, Naples, 80145, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sgarbanti, Rossella" sort="Sgarbanti, Rossella" uniqKey="Sgarbanti R" first="Rossella" last="Sgarbanti">Rossella Sgarbanti</name>
</author>
<author>
<name sortKey="Aquilano, Katia" sort="Aquilano, Katia" uniqKey="Aquilano K" first="Katia" last="Aquilano">Katia Aquilano</name>
</author>
<author>
<name sortKey="Baldelli, Sara" sort="Baldelli, Sara" uniqKey="Baldelli S" first="Sara" last="Baldelli">Sara Baldelli</name>
</author>
<author>
<name sortKey="Limongi, Dolores" sort="Limongi, Dolores" uniqKey="Limongi D" first="Dolores" last="Limongi">Dolores Limongi</name>
</author>
<author>
<name sortKey="Civitelli, Livia" sort="Civitelli, Livia" uniqKey="Civitelli L" first="Livia" last="Civitelli">Livia Civitelli</name>
</author>
<author>
<name sortKey="Nencioni, Lucia" sort="Nencioni, Lucia" uniqKey="Nencioni L" first="Lucia" last="Nencioni">Lucia Nencioni</name>
</author>
<author>
<name sortKey="Garaci, Enrico" sort="Garaci, Enrico" uniqKey="Garaci E" first="Enrico" last="Garaci">Enrico Garaci</name>
</author>
<author>
<name sortKey="Ciriolo, Maria Rosa" sort="Ciriolo, Maria Rosa" uniqKey="Ciriolo M" first="Maria Rosa" last="Ciriolo">Maria Rosa Ciriolo</name>
</author>
<author>
<name sortKey="Palamara, Anna Teresa" sort="Palamara, Anna Teresa" uniqKey="Palamara A" first="Anna Teresa" last="Palamara">Anna Teresa Palamara</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25154738</idno>
<idno type="pmid">25154738</idno>
<idno type="doi">10.1111/cmi.12343</idno>
<idno type="wicri:Area/PubMed/Corpus">000456</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000456</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Influenza virus replication in lung epithelial cells depends on redox-sensitive pathways activated by NOX4-derived ROS.</title>
<author>
<name sortKey="Amatore, Donatella" sort="Amatore, Donatella" uniqKey="Amatore D" first="Donatella" last="Amatore">Donatella Amatore</name>
<affiliation>
<nlm:affiliation>Department of Public Health and Infectious Diseases, Pasteur Institute-Fondazione Cenci-Bolognetti, Sapienza University of Rome, Rome, 00185, Italy; CEINGE Advanced Biotechnology, Naples, 80145, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sgarbanti, Rossella" sort="Sgarbanti, Rossella" uniqKey="Sgarbanti R" first="Rossella" last="Sgarbanti">Rossella Sgarbanti</name>
</author>
<author>
<name sortKey="Aquilano, Katia" sort="Aquilano, Katia" uniqKey="Aquilano K" first="Katia" last="Aquilano">Katia Aquilano</name>
</author>
<author>
<name sortKey="Baldelli, Sara" sort="Baldelli, Sara" uniqKey="Baldelli S" first="Sara" last="Baldelli">Sara Baldelli</name>
</author>
<author>
<name sortKey="Limongi, Dolores" sort="Limongi, Dolores" uniqKey="Limongi D" first="Dolores" last="Limongi">Dolores Limongi</name>
</author>
<author>
<name sortKey="Civitelli, Livia" sort="Civitelli, Livia" uniqKey="Civitelli L" first="Livia" last="Civitelli">Livia Civitelli</name>
</author>
<author>
<name sortKey="Nencioni, Lucia" sort="Nencioni, Lucia" uniqKey="Nencioni L" first="Lucia" last="Nencioni">Lucia Nencioni</name>
</author>
<author>
<name sortKey="Garaci, Enrico" sort="Garaci, Enrico" uniqKey="Garaci E" first="Enrico" last="Garaci">Enrico Garaci</name>
</author>
<author>
<name sortKey="Ciriolo, Maria Rosa" sort="Ciriolo, Maria Rosa" uniqKey="Ciriolo M" first="Maria Rosa" last="Ciriolo">Maria Rosa Ciriolo</name>
</author>
<author>
<name sortKey="Palamara, Anna Teresa" sort="Palamara, Anna Teresa" uniqKey="Palamara A" first="Anna Teresa" last="Palamara">Anna Teresa Palamara</name>
</author>
</analytic>
<series>
<title level="j">Cellular microbiology</title>
<idno type="eISSN">1462-5822</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Cells, Cultured</term>
<term>Epithelial Cells (enzymology)</term>
<term>Epithelial Cells (virology)</term>
<term>Gene Expression</term>
<term>Host-Pathogen Interactions</term>
<term>Humans</term>
<term>Influenza A virus (physiology)</term>
<term>Mice</term>
<term>NADPH Oxidase 4</term>
<term>NADPH Oxidases (metabolism)</term>
<term>Oxidation-Reduction</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Up-Regulation</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>NADPH Oxidases</term>
<term>Reactive Oxygen Species</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>NADPH Oxidase 4</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Epithelial Cells</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Influenza A virus</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Epithelial Cells</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cells, Cultured</term>
<term>Gene Expression</term>
<term>Host-Pathogen Interactions</term>
<term>Humans</term>
<term>Mice</term>
<term>Oxidation-Reduction</term>
<term>Up-Regulation</term>
<term>Virus Replication</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">An overproduction of reactive oxygen species (ROS) mediated by NADPH oxidase 2 (NOX2) has been related to airway inflammation typical of influenza infection. Virus-induced oxidative stress may also control viral replication, but the mechanisms underlying ROS production, as well as their role in activating intracellular pathways and specific steps of viral life cycle under redox control have to be fully elucidated. In this study, we demonstrate that influenza A virus infection of lung epithelial cells causes a significant ROS increase that depends mainly on NOX4, which is upregulated at both mRNA and protein levels, while the expression of NOX2, the primary source of ROS in inflammatory cells, is downregulated. Inhibition of NOX4 activity through chemical inhibitors or RNA silencing blocks the ROS increase, prevents MAPK phosphorylation, and inhibits viral ribonucleoprotein (vRNP) nuclear export and viral release. Overall these data, obtained in cell lines and primary culture, describe a so far unrecognized role for NOX4-derived ROS in activating redox-regulated intracellular pathways during influenza virus infection and highlight their relevance in controlling specific steps of viral replication in epithelial cells. Pharmacological modulation of NOX4-mediated ROS production may open the way for new therapeutic approaches to fighting influenza by targeting cell and not the virus. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25154738</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>08</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1462-5822</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>17</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2015</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Cellular microbiology</Title>
<ISOAbbreviation>Cell. Microbiol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Influenza virus replication in lung epithelial cells depends on redox-sensitive pathways activated by NOX4-derived ROS.</ArticleTitle>
<Pagination>
<MedlinePgn>131-45</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/cmi.12343</ELocationID>
<Abstract>
<AbstractText>An overproduction of reactive oxygen species (ROS) mediated by NADPH oxidase 2 (NOX2) has been related to airway inflammation typical of influenza infection. Virus-induced oxidative stress may also control viral replication, but the mechanisms underlying ROS production, as well as their role in activating intracellular pathways and specific steps of viral life cycle under redox control have to be fully elucidated. In this study, we demonstrate that influenza A virus infection of lung epithelial cells causes a significant ROS increase that depends mainly on NOX4, which is upregulated at both mRNA and protein levels, while the expression of NOX2, the primary source of ROS in inflammatory cells, is downregulated. Inhibition of NOX4 activity through chemical inhibitors or RNA silencing blocks the ROS increase, prevents MAPK phosphorylation, and inhibits viral ribonucleoprotein (vRNP) nuclear export and viral release. Overall these data, obtained in cell lines and primary culture, describe a so far unrecognized role for NOX4-derived ROS in activating redox-regulated intracellular pathways during influenza virus infection and highlight their relevance in controlling specific steps of viral replication in epithelial cells. Pharmacological modulation of NOX4-mediated ROS production may open the way for new therapeutic approaches to fighting influenza by targeting cell and not the virus. </AbstractText>
<CopyrightInformation>© 2014 The Authors. Cellular Microbiology published by John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Amatore</LastName>
<ForeName>Donatella</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Public Health and Infectious Diseases, Pasteur Institute-Fondazione Cenci-Bolognetti, Sapienza University of Rome, Rome, 00185, Italy; CEINGE Advanced Biotechnology, Naples, 80145, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sgarbanti</LastName>
<ForeName>Rossella</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Aquilano</LastName>
<ForeName>Katia</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Baldelli</LastName>
<ForeName>Sara</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Limongi</LastName>
<ForeName>Dolores</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Civitelli</LastName>
<ForeName>Livia</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nencioni</LastName>
<ForeName>Lucia</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Garaci</LastName>
<ForeName>Enrico</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ciriolo</LastName>
<ForeName>Maria Rosa</ForeName>
<Initials>MR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Palamara</LastName>
<ForeName>Anna Teresa</ForeName>
<Initials>AT</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>10</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Cell Microbiol</MedlineTA>
<NlmUniqueID>100883691</NlmUniqueID>
<ISSNLinking>1462-5814</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.6.3.-</RegistryNumber>
<NameOfSubstance UI="D000074663">NADPH Oxidase 4</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.6.3.-</RegistryNumber>
<NameOfSubstance UI="D019255">NADPH Oxidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.6.3.-</RegistryNumber>
<NameOfSubstance UI="C498910">NOX4 protein, human</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004847" MajorTopicYN="N">Epithelial Cells</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="Y">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009980" MajorTopicYN="N">Influenza A virus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000074663" MajorTopicYN="N">NADPH Oxidase 4</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019255" MajorTopicYN="N">NADPH Oxidases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015854" MajorTopicYN="N">Up-Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="Y">Virus Replication</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>03</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2014</Year>
<Month>07</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>08</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>8</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>8</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>8</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25154738</ArticleId>
<ArticleId IdType="doi">10.1111/cmi.12343</ArticleId>
<ArticleId IdType="pmc">PMC4311438</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Antioxid Redox Signal. 2011 Aug 1;15(3):593-606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21366409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2003 Apr 1;34(7):928-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12654482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol. 1968 Apr;16(4):588-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5647517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AIDS Res Hum Retroviruses. 1996 Sep 20;12(14):1373-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8891117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2000;917:906-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11268420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Dec;83(24):12934-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19812163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2011 Sep 16;29(40):6823-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21816192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Apr 18;133(2):235-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18423196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Pharmacol. 2010 Oct;161(4):885-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20860666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Biochem Nutr. 2012 Jan;50(1):9-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22247596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jun 16;281(24):16707-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16608852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Pharm Des. 2011 Dec;17(35):3898-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21933147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2003 Sep 15;63(18):5940-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14522920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2008 May 15;180(10):6911-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18453612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2012 Jul;69(14):2327-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22648375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2008 Mar;65(6):991-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18239850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Lett. 2010 Jan 18;469(1):39-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19945511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2011 May 1;50(9):1039-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21255638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 Sep 5;266(25):16736-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1885602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2006 Aug;20(10):1683-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16790527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Jul;80(14):7199-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16809325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2005 Oct 15;175(8):5269-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16210632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Signal. 2006 Jan;18(1):69-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15927447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Rev. 2007 Jan;87(1):245-313</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17237347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Leukoc Biol. 1997 Jul;62(1):54-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9225993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 2008;40(11):2660-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18586551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1992 Nov 16;188(3):1090-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1332709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Jan 31;272(5):2700-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9006907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Sep;10(9):1549-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18479206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 1999 Apr;26(7-8):858-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10232829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Nov;10(11):1941-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18774901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1998 Dec 20;252(2):324-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9878611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2003 Jun;28(6):731-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12600836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Nov;84(21):11359-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20702616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(2):e32270</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22393394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Immunol. 2006 Jun;36(6):1364-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16703568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2012 Sep;69(18):3159-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22875281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Sep 17;279(38):39872-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15254031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2003 Apr;17(6):758-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12594179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biofactors. 2003;17(1-4):287-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12897450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 1996 Apr;14(4):309-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8600933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Virol. 2012 Oct;2(5):572-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22846888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2010 Jul;30(14):3553-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20457808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Feb;74(4):1781-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10644350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 1995 Jun;27(3):237-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8540746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Res Commun. 1987;3(1-5):39-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3508443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10736-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12149435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Thromb Res. 2009 Sep;124(4):439-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19540572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010;6(9):e1001106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20862325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1951 Nov;193(1):265-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14907713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011;7(2):e1001271</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21304882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Immunol. 2011 Dec;32(12):559-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21962746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2005 May 15;191(10):1719-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15838800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Jan 3;289(1):13-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24189062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2001 Mar;3(3):301-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11231581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Virol. 2001 Feb;20(3):99-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11166656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010;6(6):e1000930</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20532218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuroinflammation. 2011;8:123</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21943001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Aug;79(16):10147-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16051807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jun 5;284(23):16004-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19336399</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/StressCovidV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000456 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000456 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    StressCovidV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25154738
   |texte=   Influenza virus replication in lung epithelial cells depends on redox-sensitive pathways activated by NOX4-derived ROS.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:25154738" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a StressCovidV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed May 6 16:44:09 2020. Site generation: Sun Mar 28 08:26:57 2021