Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Polyprotein cleavage mechanism of SARS CoV Mpro and chemical modification of the octapeptide.

Identifieur interne : 002A89 ( PubMed/Curation ); précédent : 002A88; suivant : 002A90

Polyprotein cleavage mechanism of SARS CoV Mpro and chemical modification of the octapeptide.

Auteurs : Qi-Shi Du [République populaire de Chine] ; Shu-Qing Wang ; Yu Zhu ; Dong-Qing Wei ; Hong Guo ; Suzanne Sirois ; Kuo-Chen Chou

Source :

RBID : pubmed:15501516

Descripteurs français

English descriptors

Abstract

The cleavage mechanism of severe acute respiratory syndrome (SARS) coronavirus main proteinase (M(pro) or 3CL(pro)) for the octapeptide AVLQSGFR is studied using molecular mechanics (MM) and quantum mechanics (QM). The catalytic dyad His-41 and Cys-145 in the active pocket between domain I and II seem to polarize the pi-electron density of the peptide bond between Gln and Ser in the octapeptide, leading to an increase of positive charge on C(CO) of Gln and negative charge on N(NH) of Ser. The possibility of enhancing the chemical bond between Gln and Ser based on the "distorted key" theory [Anal. Biochem. 233 (1996) 1] is examined. The scissile peptide bond between Gln and Ser is found to be solidified through "hybrid peptide bond" by changing the carbonyl group CO of Gln to CH(2) or CF(2). This leads to a break of the pi-bond system for the peptide bond, making the octapeptide (AVLQSGFR) a "distorted key" and a potential starting system for the design of anti SARS drugs.

DOI: 10.1016/j.peptides.2004.06.018
PubMed: 15501516

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:15501516

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Polyprotein cleavage mechanism of SARS CoV Mpro and chemical modification of the octapeptide.</title>
<author>
<name sortKey="Du, Qi Shi" sort="Du, Qi Shi" uniqKey="Du Q" first="Qi-Shi" last="Du">Qi-Shi Du</name>
<affiliation wicri:level="1">
<nlm:affiliation>Tianjin Normal University and Tianjin Institute of Bioinformatics and Drug Discovery, Tianjin 300074, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Tianjin Normal University and Tianjin Institute of Bioinformatics and Drug Discovery, Tianjin 300074</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wang, Shu Qing" sort="Wang, Shu Qing" uniqKey="Wang S" first="Shu-Qing" last="Wang">Shu-Qing Wang</name>
</author>
<author>
<name sortKey="Zhu, Yu" sort="Zhu, Yu" uniqKey="Zhu Y" first="Yu" last="Zhu">Yu Zhu</name>
</author>
<author>
<name sortKey="Wei, Dong Qing" sort="Wei, Dong Qing" uniqKey="Wei D" first="Dong-Qing" last="Wei">Dong-Qing Wei</name>
</author>
<author>
<name sortKey="Guo, Hong" sort="Guo, Hong" uniqKey="Guo H" first="Hong" last="Guo">Hong Guo</name>
</author>
<author>
<name sortKey="Sirois, Suzanne" sort="Sirois, Suzanne" uniqKey="Sirois S" first="Suzanne" last="Sirois">Suzanne Sirois</name>
</author>
<author>
<name sortKey="Chou, Kuo Chen" sort="Chou, Kuo Chen" uniqKey="Chou K" first="Kuo-Chen" last="Chou">Kuo-Chen Chou</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15501516</idno>
<idno type="pmid">15501516</idno>
<idno type="doi">10.1016/j.peptides.2004.06.018</idno>
<idno type="wicri:Area/PubMed/Corpus">002A89</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002A89</idno>
<idno type="wicri:Area/PubMed/Curation">002A89</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002A89</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Polyprotein cleavage mechanism of SARS CoV Mpro and chemical modification of the octapeptide.</title>
<author>
<name sortKey="Du, Qi Shi" sort="Du, Qi Shi" uniqKey="Du Q" first="Qi-Shi" last="Du">Qi-Shi Du</name>
<affiliation wicri:level="1">
<nlm:affiliation>Tianjin Normal University and Tianjin Institute of Bioinformatics and Drug Discovery, Tianjin 300074, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Tianjin Normal University and Tianjin Institute of Bioinformatics and Drug Discovery, Tianjin 300074</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wang, Shu Qing" sort="Wang, Shu Qing" uniqKey="Wang S" first="Shu-Qing" last="Wang">Shu-Qing Wang</name>
</author>
<author>
<name sortKey="Zhu, Yu" sort="Zhu, Yu" uniqKey="Zhu Y" first="Yu" last="Zhu">Yu Zhu</name>
</author>
<author>
<name sortKey="Wei, Dong Qing" sort="Wei, Dong Qing" uniqKey="Wei D" first="Dong-Qing" last="Wei">Dong-Qing Wei</name>
</author>
<author>
<name sortKey="Guo, Hong" sort="Guo, Hong" uniqKey="Guo H" first="Hong" last="Guo">Hong Guo</name>
</author>
<author>
<name sortKey="Sirois, Suzanne" sort="Sirois, Suzanne" uniqKey="Sirois S" first="Suzanne" last="Sirois">Suzanne Sirois</name>
</author>
<author>
<name sortKey="Chou, Kuo Chen" sort="Chou, Kuo Chen" uniqKey="Chou K" first="Kuo-Chen" last="Chou">Kuo-Chen Chou</name>
</author>
</analytic>
<series>
<title level="j">Peptides</title>
<idno type="ISSN">0196-9781</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Binding Sites</term>
<term>Computer Simulation</term>
<term>Cysteine (chemistry)</term>
<term>Cysteine Endopeptidases (chemistry)</term>
<term>Cysteine Endopeptidases (metabolism)</term>
<term>Drug Design</term>
<term>Glutamine (chemistry)</term>
<term>Histidine (chemistry)</term>
<term>Hydrogen Bonding</term>
<term>Models, Molecular</term>
<term>Molecular Biology</term>
<term>Molecular Structure</term>
<term>Peptides (chemistry)</term>
<term>Protein Conformation</term>
<term>Protein Structure, Tertiary</term>
<term>Quantum Theory</term>
<term>SARS Virus (chemistry)</term>
<term>SARS Virus (isolation & purification)</term>
<term>SARS Virus (metabolism)</term>
<term>Serine (chemistry)</term>
<term>Severe Acute Respiratory Syndrome (virology)</term>
<term>Static Electricity</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Biologie moléculaire</term>
<term>Conception de médicament</term>
<term>Conformation des protéines</term>
<term>Cysteine endopeptidases ()</term>
<term>Cysteine endopeptidases (métabolisme)</term>
<term>Cystéine ()</term>
<term>Glutamine ()</term>
<term>Histidine ()</term>
<term>Liaison hydrogène</term>
<term>Modèles moléculaires</term>
<term>Peptides ()</term>
<term>Simulation numérique</term>
<term>Sites de fixation</term>
<term>Structure moléculaire</term>
<term>Structure tertiaire des protéines</term>
<term>Syndrome respiratoire aigu sévère (virologie)</term>
<term>Séquence d'acides aminés</term>
<term>Sérine ()</term>
<term>Théorie quantique</term>
<term>Virus du SRAS ()</term>
<term>Virus du SRAS (isolement et purification)</term>
<term>Virus du SRAS (métabolisme)</term>
<term>Électricité statique</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cysteine</term>
<term>Cysteine Endopeptidases</term>
<term>Glutamine</term>
<term>Histidine</term>
<term>Peptides</term>
<term>Serine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cysteine Endopeptidases</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cysteine endopeptidases</term>
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Syndrome respiratoire aigu sévère</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Binding Sites</term>
<term>Computer Simulation</term>
<term>Drug Design</term>
<term>Hydrogen Bonding</term>
<term>Models, Molecular</term>
<term>Molecular Biology</term>
<term>Molecular Structure</term>
<term>Protein Conformation</term>
<term>Protein Structure, Tertiary</term>
<term>Quantum Theory</term>
<term>Static Electricity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biologie moléculaire</term>
<term>Conception de médicament</term>
<term>Conformation des protéines</term>
<term>Cysteine endopeptidases</term>
<term>Cystéine</term>
<term>Glutamine</term>
<term>Histidine</term>
<term>Liaison hydrogène</term>
<term>Modèles moléculaires</term>
<term>Peptides</term>
<term>Simulation numérique</term>
<term>Sites de fixation</term>
<term>Structure moléculaire</term>
<term>Structure tertiaire des protéines</term>
<term>Séquence d'acides aminés</term>
<term>Sérine</term>
<term>Théorie quantique</term>
<term>Virus du SRAS</term>
<term>Électricité statique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The cleavage mechanism of severe acute respiratory syndrome (SARS) coronavirus main proteinase (M(pro) or 3CL(pro)) for the octapeptide AVLQSGFR is studied using molecular mechanics (MM) and quantum mechanics (QM). The catalytic dyad His-41 and Cys-145 in the active pocket between domain I and II seem to polarize the pi-electron density of the peptide bond between Gln and Ser in the octapeptide, leading to an increase of positive charge on C(CO) of Gln and negative charge on N(NH) of Ser. The possibility of enhancing the chemical bond between Gln and Ser based on the "distorted key" theory [Anal. Biochem. 233 (1996) 1] is examined. The scissile peptide bond between Gln and Ser is found to be solidified through "hybrid peptide bond" by changing the carbonyl group CO of Gln to CH(2) or CF(2). This leads to a break of the pi-bond system for the peptide bond, making the octapeptide (AVLQSGFR) a "distorted key" and a potential starting system for the design of anti SARS drugs.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15501516</PMID>
<DateCompleted>
<Year>2005</Year>
<Month>04</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0196-9781</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>25</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2004</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Peptides</Title>
<ISOAbbreviation>Peptides</ISOAbbreviation>
</Journal>
<ArticleTitle>Polyprotein cleavage mechanism of SARS CoV Mpro and chemical modification of the octapeptide.</ArticleTitle>
<Pagination>
<MedlinePgn>1857-64</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The cleavage mechanism of severe acute respiratory syndrome (SARS) coronavirus main proteinase (M(pro) or 3CL(pro)) for the octapeptide AVLQSGFR is studied using molecular mechanics (MM) and quantum mechanics (QM). The catalytic dyad His-41 and Cys-145 in the active pocket between domain I and II seem to polarize the pi-electron density of the peptide bond between Gln and Ser in the octapeptide, leading to an increase of positive charge on C(CO) of Gln and negative charge on N(NH) of Ser. The possibility of enhancing the chemical bond between Gln and Ser based on the "distorted key" theory [Anal. Biochem. 233 (1996) 1] is examined. The scissile peptide bond between Gln and Ser is found to be solidified through "hybrid peptide bond" by changing the carbonyl group CO of Gln to CH(2) or CF(2). This leads to a break of the pi-bond system for the peptide bond, making the octapeptide (AVLQSGFR) a "distorted key" and a potential starting system for the design of anti SARS drugs.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Du</LastName>
<ForeName>Qi-Shi</ForeName>
<Initials>QS</Initials>
<AffiliationInfo>
<Affiliation>Tianjin Normal University and Tianjin Institute of Bioinformatics and Drug Discovery, Tianjin 300074, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Shu-Qing</ForeName>
<Initials>SQ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhu</LastName>
<ForeName>Yu</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wei</LastName>
<ForeName>Dong-Qing</ForeName>
<Initials>DQ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Guo</LastName>
<ForeName>Hong</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sirois</LastName>
<ForeName>Suzanne</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chou</LastName>
<ForeName>Kuo-Chen</ForeName>
<Initials>KC</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Peptides</MedlineTA>
<NlmUniqueID>8008690</NlmUniqueID>
<ISSNLinking>0196-9781</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010455">Peptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0RH81L854J</RegistryNumber>
<NameOfSubstance UI="D005973">Glutamine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>452VLY9402</RegistryNumber>
<NameOfSubstance UI="D012694">Serine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4QD397987E</RegistryNumber>
<NameOfSubstance UI="D006639">Histidine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.-</RegistryNumber>
<NameOfSubstance UI="C099456">3C-like proteinase, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.-</RegistryNumber>
<NameOfSubstance UI="D003546">Cysteine Endopeptidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003546" MajorTopicYN="N">Cysteine Endopeptidases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015195" MajorTopicYN="N">Drug Design</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005973" MajorTopicYN="N">Glutamine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006639" MajorTopicYN="N">Histidine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006860" MajorTopicYN="N">Hydrogen Bonding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008967" MajorTopicYN="N">Molecular Biology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015394" MajorTopicYN="N">Molecular Structure</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010455" MajorTopicYN="N">Peptides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011789" MajorTopicYN="N">Quantum Theory</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012694" MajorTopicYN="N">Serine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045169" MajorTopicYN="N">Severe Acute Respiratory Syndrome</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055672" MajorTopicYN="N">Static Electricity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2004</Year>
<Month>05</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2004</Year>
<Month>06</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2004</Year>
<Month>06</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>10</Month>
<Day>27</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>4</Month>
<Day>22</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>10</Month>
<Day>27</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15501516</ArticleId>
<ArticleId IdType="pii">S0196-9781(04)00279-7</ArticleId>
<ArticleId IdType="doi">10.1016/j.peptides.2004.06.018</ArticleId>
<ArticleId IdType="pmc">PMC7115412</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cell. 1999 Mar 5;96(5):615-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10089877</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Am J Respir Crit Care Med. 2003 Dec 15;168(12):1416-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14668255</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Pharmacol. 1996 Mar 22;51(6):743-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8602869</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Chem Inf Comput Sci. 2004 May-Jun;44(3):1111-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15154780</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1993 Mar 25;268(9):6119-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7681060</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 Jun 13;300(5626):1763-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12746549</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Experientia. 1994 Jan 15;50(1):23-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7507441</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell. 1998 Jul 24;94(2):171-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9695946</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 1993 Jul 6;32(26):6548-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7687145</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2003 Aug 15;308(1):148-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12890493</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Protein Chem. 1993 Jun;12(3):291-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8397787</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1993 Jul 15;268(20):14875-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7686907</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 1999 Jun 7;259(2):420-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10362524</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proteins. 2002 Aug 15;48(3):447-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12112670</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Pharmacol. 1994 Jun 1;47(11):2017-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7516658</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1967-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690091</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Anal Biochem. 1996 Jan 1;233(1):1-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8789141</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13190-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14585926</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2002 Apr 5;292(3):702-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11922623</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biopolymers. 1993 Sep;33(9):1405-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8400033</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 1995;30(4):275-349</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7587280</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Anal Biochem. 1994 Sep;221(2):217-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7529005</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>FEBS Lett. 2000 Mar 31;470(3):249-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10745077</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proteins. 1996 Jan;24(1):51-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8628733</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1993 Aug 15;268(23):16938-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8349584</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2004 Jan;78(1):216-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14671103</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Protein Eng. 1994 Jan;7(1):65-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8140096</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>FEBS Lett. 1997 Dec 8;419(1):49-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9426218</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proteins. 2003 Jan 1;50(1):44-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12471598</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002A89 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 002A89 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:15501516
   |texte=   Polyprotein cleavage mechanism of SARS CoV Mpro and chemical modification of the octapeptide.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:15501516" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021